

Founded in 1666 by Colbert, ruled by royal decrees of 20 January 1699 and later of 21 March 1816, the Academy of Sciences is an independent institution. It is now placed under the protection of the president of the French republic and is one of the five academies forming the Institut de France.

Colbert présentant les membres de l'Académie au Roi Louis XIV

In this twenty-first century, characterized by a fast increase of knowledge, the emergence of new areas of research and the emergence of societal concern about scientific and technological progress, the Academy of sciences transformed and rejuvenated tackles the new challenges with:

An augmented membership: its statutes modernized have allowed to increase the number of members to 264 academicians and to elect at each session, 50% of its new members at an age of 55 or less actively engaged in research

An open election procedure taking into account emerging disciplines with elections of new members carried out by multidisciplinary commissions implemented

Freedom of thought: the Academy statements and position papers are based on scientific reasoning and arguments preserved from external constraints A collegial operation relying on a range of scientific backgrounds but united around a common trust in science. The academy and its members aim at proposing a rational path to understanding and coping with scientific progress

Encourage scientific life

High level events in the form of meetings and colloquia.

Prizes and medals to reward the best and most promising scientists

Election to membership

Le public scientifique

Conférence-débat Intelligence Artificielle : le renouveau

Découvrir, apprendre, reconnaître, juger, décider : ces tâches perceptives et cognitives que l'on associe à l'intelligence humaine deviennent chaque jour plus accessibles à l'automatisation. Grâce aux progrès considérables de la microélectronique, à la puissance de calcul qu'elle permet et à l'accès à des quantités gigantesques de données, l'Intelligence Artificielle (IA) vit aujourd'hui un renouveau qui s'appuie sur presque toutes les sciences et touche de plus en plus à notre vie quotidienne. L'objet de cette conférence-débat est d'en présenter quelques facettes actuelles remarquables, entre sciences de l'information et informatique neuro-inspirée.

Artificial intelligence Ocober 4, 2016

Le public scientifique

INSTITUT DE FRANCE Académie des sciences

Le public industriel

Physique de la matière condensée au 21^e siècle L'impact de Jacques Friedel

Mardi 26 janvier 2016 à 10 h Grande salle des séances de l'Institut de France

Une grande part des progrès récents dans le monde de la santé, des techniques ou de l'ingénierie est due à l'apport de la physique de la matière condensée, avec notamment les études des propriétés électroniques et structurales des matériaux. Le professeur Jacques Friedel, médaille d'or du CNRS (1970), conseiller scientifique au CEA, président de l'Académie des sciences en 1993 et 1994, a très largement contribué aux succès de la recherche en matière condensée, tant par ses travaux personnels et ceux de son groupe, que par le rôle stimulant qu'il a joué dans les décisions de politique scientifique au niveau des réformes des enseignements ou de la promotion des grandes installations scientifiques. Les exposés de ce colloque témoigneront de la marque laissée par Jacques Friedel sur la recherche en physique actuelle.

Colloque Quel avenir pour la Robotique en France ?

16 juin 2016 à 9h Fondation Simone et Cino del Duca 10 rue Alfred de Vigny, 75008 Paris

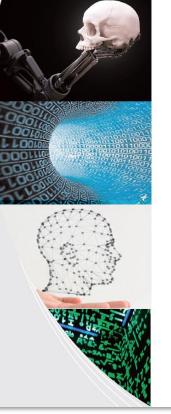
Ce colloque interacadémique s'inscrit dans le droit fil des missions de l'Académie des sciences et de l'Académie des technologies, qui est d'encourager la vie scientifique et le développement technologique en promouvant les échanges au plus haut niveau. Les deux Académies se rejoignent pour confronter les savoirs indispensables aux progrès scientifiques et technologiques et à leurs perspectives d'applications, en débattant d'un enjeu vital pour la France, celui de la robotique. Les travaux engagés au niveau interacadémique sur l'état de l'art de la robotique dans notre pays ont abouti aux trois conclusions suivantes :

 La France occupe une 4^{ème} place incontestable au niveau mondial dans le domaine des connaissances, des recherches et des technologies-clés nécessaires au développement de robots pour des usages qui se confirment en de nombreux domaines d'avenir.

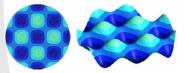
2. La France n'est productrice qu'en 12^{4me} à 14^{4me} rang des cobotsrobots qui correspondent à ses propres besoins bien qu'elle dispose de l'ensemble des compétences et des productions d'équipements technologiquement adaptés aux applications présentes et futures dans l'ensemble des usages prévisibles. Les PMI françaises de robotique seraient-elles ainsi vouées à être rachetées par les leaders internationaux du domaine ?

3. La continuation du développement des cobots-robots, d'usage prévisible à moyen terme, implique un transfert du virtuel vers des actions concrètes au service de l'humain. Elle nécessite une forte relation entre les acteurs, concepteurs, développeurs et utilisateurs des quatre mondes, de la connaissance de base aux technologies appliquées, des industriels producteurs aux praticiens et usagers opérateurs dans les installations à haute technicité du futur.

Condensed matter physics in the 21st Century, January 26, 2016 The future of robotics in France June 16, 2016


INSTITUT DE FRANCE Académie des sciences

INSTITUT DE FRANCE Académie des sciences



Les enjeux scientifiques de l'éthique du numérique

Mardi 23 mai 2017 de 14h30 à 16h30 Grande salle des séances de l'Institut de France 23, quai de Conti, 75006 Paris

Le débat public aborde souvent des questions éthiques liées au développement de l'informatique, dans lesquelles faits objectifs et fantasmes se côtoient hélas souvent. De nombreux projets scientifiques comportent également un volet éthique et sociétal. La loi sur la République numérique a récemment confié à la Commission nationale de l'informatique et des libertés, l'animation de débats, et l'année 2017 sera ainsi consacrée à « Éthique et numérique : les algorithmes en débat ».

Ces exigences éthiques, loin d'être des entraves à la recherche, se révêlent au contraire être une source féconde de défis scientifiques et techniques. Qu'il s'agisse de données massives où sont disséminées nos données personnelles, de plate-formes web, d'objets connectés, de robots et véhicules autonomes, ou d'algorithmes quotidiens, la conception de systèmes informatiques en conformité avec des exigences telles que la sûreté, la transparence, la loyauté, l'équité, l'intelligibilité, la confidentialité, mène à de nouvelles questions scientifiques auxquelles nous ne savons pas toujours répondre, comme l'illustrera cette séance.

Les simulations « frontières » en mécanique des solides et des fluides

Mardi 9 mai 2017 de 14h30 à 17h00 Grande salle des séances de l'Institut de France

23, quai de Conti, 75006 Paris

Les progrès de la simulation numérique en mécanique des solides et des fluides ont eu une influence marquante sur la recherche scientifique dans ce domaine et sur les méthodes de conception utilisables en pratique. La simulation, désormais incontournable, a remplacé pour une bonne part les processus d'essais qui étaient la norme dans les développements techniques. Des essais sont toujours effectués mais ils sont désormais guidés par la simulation. La simulation permet de comprendre, maîtriser, tester, améliorer, comparer et optimiser.

Un objectif fondamental de la recherche dans le domaine du calcul à haute performance en mécanique est d'explorer par des simulations « frontières » ce que seront les méthodes de conception de demain, faire que les moyens développés par la recherche aujourd'hui deviennent des outils utilisables en conception. Les progrès et les défis seront donc illustrés au moyen d'exemples de calculs « frontières ». On se propose de montrer que des progrès substantiels ont été réalisés sur des questions scientifiques majeures mais que les calculs ont aussi une utilité pratique pour la conception et le développement industriel. Ainsi, le calcul à haute performance répond à des objectifs scientifiques mais il permet aussi de concevoir des systèmes plus performants, d'optimiser leur efficacité énergétique, de réduire les émissions polluantes, en un mot d'augmenter la qualité et donc la compétitivité économique.

Frontier simulations in solid and fluid mechanics, May 9, 2017

Scientific issues in the ethics of numerics, May 23, 2017

Conférence-débat

100 ans de révolutions quantiques

24 mai 2016 à 9h30 Grande salle des séances de l'Institut de France

Ordinateurs, téléphones portables, localisation et gui-dage par GPS, lasers dédiés à la chirurgie des yeux ou à la lecture des disques CD et DVD, mémoires magnétiques ou optiques, imagerie médicale, télécommuni-cations par fibres optiques... Qui, aujourd'hui, pourrait vraiment se passer de tous ces progrès technologiques qui ont révolutionné notre vie quotidienne ? Or, il y a cent ans, personne n'imaginait de tels progrès. Tous sont venus, de façon souvent inattendue, de découvertes fondamentales liées à la physique quantique, dont l'émergence au début du siècle dernier a révolutionné notre vision du monde. Ce sont, en fait, notre compréhension de la lumière et

Le public

de ses interactions avec la matière, nos connaissances de la chimie des matériaux et de leurs propriétés mécaniques, électriques, magnétiques et optiques, ainsi que notre conception de l'origine de l'Univers qui ont été bouleversées par la physique quantique. Car bound verses par la pri) aque quantique. Sans recherche fondamentale motivée par la curiostié, il n'y aurait pas d'innovations. Nous attendons le déve-loppement de bien d'autres technologies quantiques sans pouvoir vraiment prédire ce qu'elles seront.

Colloquium « 100 years of quantum revolutions » May 24, 2016

Promote science education

On going reflections on science education in primary and high school education: participation to the Foundation « La main à la pâte ».

Network of advisors in rectorates.

"Speed Science » meeting with high school students.

Educational activities in the homes of illustrious scientists

Speed science : academy members meet high school students

POUR L'ÉDUCATION À LA SCIENCE

L'Académie accueille des lycéens et des étudiants lors du Speed sciences 2014

Science outreach

High school students and their professors were at the Académie des sciences on Friday, June 3, 2016 to attend a conference by Sandra Lavorel, member of the Academy, on « Biodiversity at the service of societies»

Transmit knowledge

Publication of the Proceedings of the Academy of Sciences (Comptes Rendus)

Online video release of public meetings, website, electronic Letter, ...)

Archives available to researchers

Specific programs: twinning with legislators ...

Foster international science collaborations

Participation to interacademic activities in european and international networks (EASAC, ICSU, IAP, STS forum...).

Science diplomacy through bilateral cooperations.

Actions to foster co-development in Africa and around the mediterranean contour

In the twinning program, Jean-Pierre Brard deputy of Montreuil visits EM2C lab, CNRS

Joint Statement on the Energy Transition in France and Germany

by the Four Academies Nationale Akademie der Wissenschaften Leopoldina acatech – Deutsche Akademie der Technikwissenschaften Académie des Sciences Académie des Technologies

July 10, 2015

Joint statement on the Energy transition in France and Germany July 10, 2015

Engagement in interacademic networks

Representatives of 14 science academies gathered for the G-sciences meeting in Tokyo (17-20 February 2016)

Demographic and socio-economic scenario

World population growth has been accompanied by a progressive increase in the number of older people. Government-supported medical research and scientific discoveries as well as improved education and living conditions have greatly reduced the chances of pandemics caused by infectious pathogens. In developed countries, life expectancy is now rising well above 80 years. Although in older people the prevailing causes of death are still cardiovascular diseases and cancer. Alzheimer's and Parkinson's diseases, Amyotrophic Lateral Sclerosis and other neurodegenerative disorders that are known to be strongly agerelated are among the top ten illnesses ending with death that cannot yet be cured or slowed significantly.

The increase in the frequency of disabling, currently incurable neurodegenerative disorders is likely to have a devastating impact on individuals, families and societies, unless effective means to reduce the incidence and progression of these diseases are discovered. Alzheimer's disease alone will affect between one-third and one-half of people above 85 years of age; thus the number of people affected, estimated at 40 million worldwide in 2015, is anticipated to increase to 135 million by 2050 (e.g. 1; 2). As life expectancy in developed countries increases, the individual, social and financial burden of assisting these disabled patients surely will grow. In 2050 the economic toll is expected to rise to about one trillion US\$ per vear in the USA alone (e.g. 1). Moreover, in low- and middle-income countries the number of afflicted persons will increase in parallel with life expectancy, with serious negative impacts on their economies unless affordable healthcare and treatments become available

These diseases currently have no cure but only care. Specific and effective treatments for them are urgently needed. Because of the heavy personal and economic impact of neurodegenerative diseases, and since pharmaceutical companies are unlikely to invest in the kind of fundamental research necessary to crack the problem, a significant expansion of public funding is vital to sustain a worldwide effort against the growing burden of these brain diseases. Based on recent progress, a global effort may have a realistic chance to address the problem effectively. Now is the time for political action given that the unrestrained aging of the population forebodes a depressing future for the next generations.

Scientific outlook

Neurodegenerative diseases are variable, with symptoms ranging from progressive dysfunction of

motor control to mood disorders and cognitive deficits eventually expressed as full-blown dementia. When cognitive problems first begin and before they are sufficiently severe to impair markedly a subject's ability to carry out daily activities, the pathology results in mild cognitive impairment that may progress to a fullfledged dementia. With time, disabilities impair normal, autonomous life, and eventually these patients require total assistance.

Today the primary goal is understanding the causes, mechanisms and progression of these disabling diseases. In spite of the evident clinical differences among them, neurodegenerative diseases have some fundamental commonalities. Pathology studies have revealed that the brain, spinal cord or peripheral nervous tissue harbor a number of abnormal nerve cells containing aggregates of damaged proteins that are characteristic of each clinical disorder.

Vascular and inflammatory processes contribute to the progression of many neurodegenerative diseases. Nevertheless, the discovery that protein damage is likely to be a unifying molecular mechanism shared by different neurodegenerative diseases has been an important step forward. A sensible strategy is to discover methods and drugs that either prevent or interfere with the formation and accumulation of these damaged proteins. Further research aimed at understanding the underlying molecular and cellular bases of these diseases would offer great hope for the future.

Challenges and strategies

Important research initiatives are underway (e.g. 3), but the magnitude of this problem calls for much broad der efforts as no effective and specific cure is currently available. Medical care and social assistance for afflicted patients and their families are essential, and some successes in terms of caring and improvements in quality of life have been achieved, even though such services are often overburdened. Moreover, education, diet, physical exercise, cognitive stimulation, and treatment of diabetes, hypertension, obesity, might improve cognitive status. These effects, however, are small (e.g. 4) and have to be confirmed, which calls for well-controlled, large and randomized clinical trials.

In order to identify molecular targets for novel therapeutic interventions, the underlying physiological and molecular mechanisms leading to neurodegenerative disorders must be unveiled through innovative basic research. A rational strategy to address the problem of these neurodegenerative diseases demands an aggressive international initiative aimed at (i) recruiting talented and committed scientists to study New economic growth: the role of science, technology, innovation and infrastructure

Policy recommendations

G7 Academies of Science urge governments to:

- i. expand investment and capabilities in science and pre-competitive technologies;
- ii. increase investment in infrastructures both tangible and intangible - that contribute to inclusive development and to progress in science and technology;
- iii. promote the development of capacities to design, engineer, produce and deliver products and services based on new science and technology;
- promote open access subject to appropriate regulations with regard to intellectual property to advances in science and technology, while preventing the emergence of monopolistic practices;
- share effective practices in policies and programs that promote innovation, technological diffusion, and efficient infrastructure development. Actions should be taken with all appropriate partners, such as Multilateral and National Development Banks, especially for reducing the North-South divide;
- ensure that appropriate governance frameworks are adopted, so that the benefits of science and technology are fully realized, while maintaining public trust.

1. Challenges

1.1. Science and technology for growth and sustainability

Science, technology and innovation have long been important drivers of economic growth and human development. Growth relies on the integration of basic and applied research, at both public and private levels, on an international scale. The challenge is to ensure that, even during phases of economic slowdown, science and technology continue to support the objectives of sustainability and improved living standards in all countries.

Institutional arrangements are needed to make sure that the potential of science and technology is aligned with the paths and strategies of economic development, social inclusion and environmental sustainability, as argued by the United Nations report, "Transforming our world: the 2030 Agenda for Sustainable Development".

This year our statement highlights the importance of investing in science, technology and infrastructure, in

line with Goal 9 of the UN 2030 Agenda for Sustainable Development, which is to "Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation". In the aftermath of the 2008 economic crisis that has slowed down world growth, we need to make sure that investment in science, technology, innovation and infrastructure expands its contribution to sustainable and inclusive world growth.

1.2. Technological and innovation drivers for a new growth

Innovation has played a crucial role in the rapid growth of advanced and emerging economies; however there are increasing concerns that the benefits of technology-led economic growth have not reached all members of society. Furthermore, growth is placing increasing demands on finite natural resources and is contributing to climate change. In addition, the diffusion of new information technologies raises issues of ethics, privacy, security and trust.

Today, technological drivers with accelerating impact include:

- Digitalization and automation of production, including integration of different technological drivers in the reorganization of economic activities;
- Smart systems, especially in renewable energy, transport, mobility and human-machine interfaces;
- Artificial Intelligence, with its ability to change our work-life balance and to impact many fields such as transportation and health care;
- Bio-medical technology, with the exploitation of the new knowledge offered by genomics and its expansion to the diverse sectors of the "omics" revolution, with benefits extending even beyond health;
- Sustainable technologies that could reshape the activities of production and consumption in ways that conserve natural resources, reduce climate change and improve environmental quality.

Attention should be given to emerging technologies in light of their potential to impact virtually all economic activities:

 Nano, Bio and Quantum technologies, yielding the ability to control matter (from inorganic to living) at the atomic level with boundless range of applications in industry, health and infrastructure;

May 2017

Provide expertise and advice

The Academy plays the role of a think tank, drafting reports, statements and position papers to provide advice to society and decision makers

Balibar

Roger Balian

Vincent Courtillot

Marc Pélegrin

Michel Pouchard Pironneau

Yves

Bréchet

Robert Guillaumont

Didier Roux

Guy

Laval

Bernard Tissot

Energy prospective Committee. La recherche scientifique face aux défis de l'énergie. EDP Sciences, Les Ulis, 2012.

La recherche scientifique face aux défis de l'énergie

Marc

Fontecave

Edouard

Pierre Encrenaz

Sébastien

Catherine Michel Césarsky Combarnous

Éléments pour éclairer le débat sur les gaz de schiste

Avis de l'Académie des sciences

15 novembre 2013

Elements to clarify the debate on shale gases **15 November 2013**

NSTITUT DE ERANC Académie des sciences

> Avis de l'Académie des sciences sur : « Changement climatique et transformation du système énergétique »

Avice on the energy transition 6 January 2015

INSTITUT DE FRANCE Académie des sciences

Avis sur la transition énergétique

(dans le cadre du débat sur le projet de loi relatif à la transition énergétique pour la croissance verte)

adopté par l'Académie des sciences le 6 janvier 2015

🔚 acatech NATIONAL ACADEMY OF

Joint Statement on the Energy Transition in France and Germany

by the Four Academies Nationale Akademie der Wissenschaften Leopoldina acatech – Deutsche Akademie der Technikwissenschaften Académie des Sciences Académie des Technologies

July 10, 2015

Joint statement on the Energy transition in France and Germany **July 10, 2015**

Advice on « Climate change and the transformation of the energy system **3 novembre 2015**

EN PARTENARIAT AVEC L'ACADÉMIE DES SCIENCES

e dioxyde de carbone (CO.) gigatonnes de CO. (50 Gt en 2050?)

L'«HD» inaugure cette semaine un partenaria avec l'Académie des sciences. Régulièrement seront publiées ici des tribunes écrites par ses membres sur de grandes thématiques scientifique touchant à des enjeux de société.

Le 30 novembre s'ouvrira à Paris la COP21. Les buts fixés-« impulser/accélérer la transition vers des sociétés et des économies résiliente et sobres en carbone »sont-ils à la hauteur des enjeux? Pour Marc Fontecave, la question du traitement du CO, doit faire l'objet d'une forte réflexion prospective. Il montre que le CO, pourrait être capte et réutilisé, « fermant ainsi un cvcle carboné - et annulant son rôle de gaz à effet de serre. Marc Fontecave, membre de l'Académie des sciences et de son comité de prospective en énergi est professeur au Collège de France, où il dirise le Laboratoire de chimie des processus biologique

présent dans l'atmosphère, émises par l'homme le CO, pour la synthe et plus spécifiquement celui Il y a bien d'autres choses à faire taines de milliers de m résultant des activités humaines. avec le CO, si on sait le capter, plus bonées dont nos société est aujourd'hui considéré par les intéressantes que de le séquestrer à si fortement. Ce n'es jamais. Et les chimistes vont jouer experts du climat comme le seul tant cette molécule est responsable du réchauffement cliun rôle majeur dans le développesa transformation ma matique, en raison de ses propriément de cette nouvelle économie à impensable qu'un jo tés de gaz à effet de serre. De sorte CO,, qui n'est pas encore pour deconsacre les moyens qu'il est de bon ton de dire qu'une main mais qui constitue une persnous aurons à notre di solution, s'aioutant aux nécessaires pective fascinante. Aujourd'hui, technologies qui perme économies d'énergie à réaliser l'industrie chimique utilise 150 milser le CO, comme so lions de tonnes de CO, par an pour dans tous les secteurs d'activité bone pour prépare (bâtiment, industrie, transports, en faire de l'urée (fertilisant), du échelle des polymères etc.), serait de le capter au niveau méthanol ou des carbonates. On nates, résines, etc.), des peut faire beaucoup mieux si la redes grands centres d'émissions de la chimie fine (médica CO, (cimenteries, centrales thercherche fondamentale, technolo exemple), ou encore de miques, etc.) et de le séquestrer au gique et industrielle se donne petit Dans ce dernier cas, la plus profond de la Terre, dans des à petit comme ambition de remplaest celle, fascinante, d'i aquifères salins (formations géolocer les sources de carbone, commé ment inédit et vertueu brûlé pendant deux si ques d'eau salée), des champs d'hydrocarbures épuisés ou des **APRÈS AVOIR BRÛLÉ** burants fossiles, les tr veines de charbon inexploitées. irréversiblement en C SUR DEUX SIÈCLES LES Cependant, cette stratégie a de nité pourrait faire le c vers, transformer le CO nombreux inconvénients: effica-CARBURANTS FOSSILES, cité insuffisante et coût élevé des carbures, fermant ai L'HUMANITÉ POURRAIT procédés technologiques associés, carboné qui ne serait pi acceptation sociale limitée (sécu-**FAIRE LE CHEMIN** de gaz à effet de serre. rité des sites de séquestration mise À L'ENVERS. NOUVELLE ÉCONOMI en doute), expériences concrètes Toutes les transformat

peu nombreuses, sur des volumes très limités et le plus souvent non concluantes, de sorte que plusieurs projets ont été récemment aban donnés. De plus, cette stratégie n'aura aucun effet sur le climat car elle ne permettrait de retenir qu'une toute petite partie des 30

40 . HD . 1" AU 7 OCTOBRE 2015

L'Humanité Dimanche (Marc Fontecave)

Samples of articles published in the press by members of the Academy

La mise au point du cisplatine

Sérendipité Quand le hasard entraîne une grande découverte

l'occasion des 350 ans de l'Académie des sciences, un de ses membres, le biochimiste Éric Westhof, relate comment l'idée étrange d'un professeur de biophysique et de chimie américain a permis d'isoler une molécule anticancéreuse révolutionnaire

ena ohe

21 août 2016

Académie des

le gaz, le charbon ou le

en matière organique

question ici, demande

quantités importante

Cette nouvelle éconon

donc envisageable que

cette énergie n'est pa

fossile, mais au contra

Comment découvrir un médicament anticancéreux qui sauvera des milliers de vies? Parfois en menant des recherches très éloignées du cancer, mais surtout en étudiant le vivant sans a priori. C'est du moins le chemin qu'a emprunté le biophysicien américain Barnett Rosenberg, auteur d'une avancée médicale spectaculaire. « Selon Goethe. mieux vaut une hypothèse fausse que pas d'hypothèse du tout », commente le biochimiste et académicien Éric Westhof. « En l'occurrence, celle de Rosenberg était à la fois hasardeuse et peu fondée! La grandeur de sa découverte vient de l'ensemble des déductions logiques et des expériences systématiques qu'il a ensuite engagées pour comprendre les phénomènes qu'il observait. » 1965. Le Pr Barnett Rosenberg

enseigne la biophysique et la chimie à l'université de l'État du Michigan (États-Unis). Il étudie au microscope des cellules en cours de division. Il observe que les chromosomes se disposent alors d'une manière similaire à la limaille de fer lorsque celle-ci s'oriente le long du champ magnétique. « Il a l'idée d'appliquer la physique à la biologie et il émet l'hypothèse suivante : en appliquant un courant électrique dans des cellules, on pourrait peut-être influer sur leur division. Une idée un peu farfelue de nos jours ! En effet, les champs électriques entre les molécules sont colossaux », explique Éric Westhof.

Une réaction inattendue des bactéries

Pour tester cette drôle d'hypothèse le biophysicien prépare une expérience d'électrolyse. Il place une électrode de chaque côté d'une solution contenant. entre autres, du chlorure d'ammonium et des bactéries Escherichia coli, pour observer comment celles-ci se répliquent. Les électrodes sont en platine, un métal chimiquement inerte. «Surprise : Rosenberg et son équipe remarquent, au cours de l'expérience, que les bactéries n'arrivent plus à se diviser et forment de longs filaments. » Même lorsque le courant a cessé de passer entre les électrodes, la division cellulaire est paralysée plusieurs heures... Comment l'expliquer?

De nombreuses pistes, comme celle d'une réaction électrochimique au sein des cellules, sont étudiées. « Finalement, Rosenberg va voir ses amis biologistes. Ensemble, ils concluent qu'une réaction chimique doit se produire entre les éléments organiques contenus dans la solution et le platine », poursuit l'académicien. Leurs recherches le confirment

C'est l'action des ions présents dans la solution sur le platine de l'électrode qui donne naissance, par réaction chimique, à une nouvelle substance, et non l'effet du champ électrique. « Un autre chercheur aurait dit : j'ai raté mon expérience, j'arrête. Barnett Rosenberg, lui, travaille de manière systématique pour comprendre ce comportement inattendu des bactéries

aux grandes scientifique

« Dans les champs de l'observ ne favorise que les esprits Louis Pasteur (18

Escherichia coli et l'absence de division décou cellulaire. C'est ainsi qu'il réussit à isoler la molécule de cisplatine. » Cette substance, Admi les chimistes la connaissent déjà. Elle prem a été préparée pour la première fois en 1845 par l'Italien Michele Peyrone, qui lui décou Aujou a donné son nom : chlorure de Peyrone. Elle est composée d'un atome central de platine entouré de deux groupes ammines color surto et de deux atomes de chlore. peu d Barnett Rosenberg ne s'arrête pas en

si bon chemin. Puisque cette substance

« L'ADN des cellules cancéreuses

se réplique de manière anarchique, incontrôlée »

empêche les bactéries de se répliquer, pourrait-elle avoir un effet similaire sur les tumeurs? « On sait que les cellules cancéreuses se divisent beaucoup et que leur ADN se réplique de manière anar-chique, incontrôlée. Rosenberg a donc l'idée de chercher à inhiber cette réplication ». explique Éric Westhof. L'équipe du biophysicien démontre d'abord l'efficacité de cette molécule sur des rats et des souris atteints de cancers, « Le problème, c'est au'elle reste très toxique et atteint aussi les cellules saines. Mais au fil de ses recherches. Rosenberg va réussir à en minimiser les impacts. » En 1975, il met au point un dérivé moins toxique, le carboplatine. En 1978, le médicament issu de cette

Le Journal du Dimanche (Eric Westhof)

Énergie: comment répondre

Cette vision globale recouvre des situa-tions nationales contrastées. Pour un État, la diversification des productions

isfaire les besoins spécifiqu

1,3 TWh (térawatts-heurel) de pro

stre pays ; enfin, un re (1158 TWh) trois

France qu'en

nassif aux énergies fossiles. À ce pro

ppe, du fait d'un

nalt acte du caractère inco

tsi) outre-Rhin et de 121MW

enfin, une t

dustries et les contraintes tech

ele. Il doit any

e la part du cha ion de 75 3 on doit, pour la période plus le qui a vu la généralisation de

nergétique dépend des loitables mais aussi des novations technologiques. Le concept e « peak » (peak gas, peak oil), introdut en 1956 par le géophysicien améri-cain Marion King Hubbert pour carac-tériser le moment à partir duquel la production des énergies fossiles (char-bon, pétrole, gaz) va décroître, doit être bon, pétrole, gazt va décronre, aon eure révisé, au moins en ce qui concerne ses échéances. Cela afin de tenir compte des progrès dans les techniques d'ex-ploration et d'exploitation des gíse-ments ainsi que de l'évolution des crijues (à titre d'exemple, les tran

En partenariat

 n) et à son stockage.
e fait nouveau est la volonté affir-Au illusti En 2030, les énergies fossiles devraient rester r vertes ment nis dè fascir vivan cispla unéto la nat la dist comp exacte ions ci ďéch de l'Al de bas se sép

tionne plus de division cellulaire. » Impossible que Barnett Rosenberg, électrodes en main, en ait eu la moindre idée. Juliette Demey 🔰 @iuliettedeme

A nos lecteurs : nous avons publié par erreur dimanche dernier le dessin illustrant la thématiqu de cette semaine, que vous retrouverez donccidossus Dour dóm wrir Fillustration correcte sur le Émotions, tics et TOC..., rendez-vous sur leicht fr

1 Salencon

part des énergies renouvelables, i droélectricité est bien maîtrisée peut rencontrer des diffic iltés d'accent ation sociale en raison des dom modulable, dépasse la dizaine de gigawatts¹ (GW), peuvent assurer une ite de la demande des pays Réserve de puissance

Sans préjuger de l'Intérêt d'aut tions (solaire thermodynami le taille est de 7 MW (pour mé moire la mi est de 1 à 1,5 GW). Pour le ph ue, la pris ent liée à celle du soleil. Ou

err Ello s new math

d. Académie des Sciences/De Vive Vol rawatt est égal à mille milliard

sciences 15

ites. La r

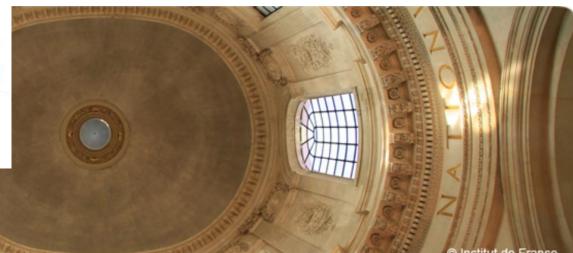
Le Figaro (Jean Salençon)

ventuelle de ces unités de production. Cette réserve est fournie solt par des entrales thermiques, solt par de l'

ceuvre le stockage d'énergie sous form d'air comprimé en sous-sol, voire à so ou électrique (supercapacités).

ie se dolt de énergétique se doit de mentionni titre des ressources, la recherci l'efficacité énergétique dans la pro-tion et dans l'utilisation. Qualifié certains de production de « 1 watts», cette démarche n'a rien

To know more about the Académie des sciences http://www.academie-sciences.fr



L'Académie des sciences, en quelques mots

Depuis sa création en 1666, l'Académie des sciences se consacre au développement des sciences et conseille les autorités gouvernementales en ce domaine. Indépendante et pérenne, placée sous la protection du président de la République, elle est l'une des cinq académies siégeant à l'Institut de France.

Présentation et documents à télécharger

Vidéos Ressources pédagogiques Comptes Rendus Plis cachetés Expertise Énergie Lauréats Prix La Lettre Appels à candidature Environnement 350 ans Comités Universalisme Presse Enseignement

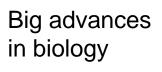
https://www.facebook.com/academiesciences/

facebook

Adresse e-mail ou mobile Mot de passe

Connexion

Informations de compte oubliées ?


Académie des sciences @academiesciences

Accueil

À propos

Photos

···· Plus 🔻

1666 - Birth of the Academy of Sciences of Paris, at the initiative of Colbert;

1699 - The Academy becomes **the Royal Academy of Science**, with bylaws defined by the king;

1793 – Suppression of the royal academies: French (created in 1635), Inscriptions and Belles-Lettres (1663) and Science (1666) ...

1795 - **Creation of the National Institute** "responsible for collecting discoveries and develop the arts and sciences";

1803 - Napoleon restructures **the National Institute into four classes** (Physical and Mathematical Sciences, French Language and Literature, History and ancient literature and fine arts);

From Louis XIV to modern days

1806 - Following the 1805 decree, members of the Institute cross the Seine and settle in the former **Collège des Quatre-Nations;**

1816 - Each of the four classes of the Institute retrieves the name Academy.

The Academy of Moral and Political Sciences joins the other four academies in 1832;

Today - Under a research act of 18 April 2006, the Institute of France and the five academies are legally defined as public entities with a special status.

Representatives of forteen science academies des sciences gathered for the G-sciences meeting in Tokyo (17-20 February 2016)

GO Hanford Data (shifted)

0.35

Time (sec)

0.40

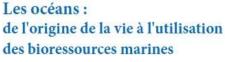
0.30

IGO Living

1.0

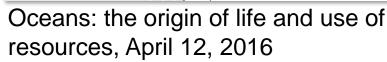
-1.0

Strain (10⁻²¹)



Académie des sciences

Académie des sciences d'outre-mer



12 avril 2016 à 9h30 Grande salle des séances de l'Institut de France 23, quai de Conti, 75006 Paris

Les océans, berceau de la vie, sont en prise directe avec le climat. Ils participent à sa régulation mais ils subissent des changements physiques et biologiques rapides. Grâce aux approches de la génomique, les connaissances sur la biodiversité marine progressent à un rythme soutenu, permettant de prédire les évolutions à venir.

Par ailleurs, les organismes marins, au centre de la biologie fondamentale, nous éclairent sur l'origine et l'évolution des lignées végétales et animales. Avec les progrès de l'aquaculture et l'émergence des biotechnologies marines, ils deviennent aussi un enjeu économique majeur pour la France, deuxième puissance maritime mondiale. Le colloque fera le point sur ces diverses questions et discutera des perspectives d'utilisation des bioressources marines avec un accent particulier sur l'outre-mer où se conjuguent le plus les enjeux climatiques et économiques.

Ondes gravitationnelles et coalescence de trous noirs

5 avril 2016 à 14h00 Grande salle des séances de

Un siècle après leur prédiction par Einstein, des ondes gravitationnelles en provenance de l'Univers lointain viennent d'être détectées sur Terre, apportant la première preuve directe de

métrique de l'espace-temps qui se propagent à la vitesse de la lumière. La détection a été effectuée en coïncidence sur les deux grands interféromètres de Michelson situés aux États-Unis, appartenant au réseau international LIGO/Virgo. Ce réseau de détecteurs est exploité par une collaboration mondiale incluant six équipes françaises. La dépendance temporelle des signaux observés porte la signature de leur source : la coalescence de deux trous noirs ayant chacun une masse de l'ordre de 30 masses solaires et situés à environ 1.3 milliards d'années-lumière de la

L'Académie des sciences organise une conférence-débat pour présenter en détail et discuter cette découverte expérimentale spectaculaire pour laquelle les physiciens ont dû relever de nombreux défis : d'une part au niveau technologique afin d'obtenir l'extrême sensibilité des détecteurs, et d'autre part pour le traitement des données qui a nécessité l'utilisation de techniques avancées d'analyse du signal. Les aspects théoriques dans le cadre de la relativité générale seront abordés et enfin les conséquences astrophysiques de ces observations seront discutées.

Gravitational waves and black holes April 5, 2016

l'Institut de France 23, quai de Conti, 75006 Paris l'existence des trous noirs.

Les ondes gravitationnelles sont des déformations infimes de la Terre.

scientifique

Le public

Outreach

« Maths and sports », conference by Etienne Ghys, mathematician and member of the Academy to high school students of the Paris rectorate

Strengthening disaster risk resilience

Strengthening Disaster Resilience is Essential to Sustainable Development

Nurturing future scientists

G-Science Academies Statement 2016: Nurturing Future Scientists

Present Status

In the decade between 2005 and 2014, more than 6,000 natural and technological disasters accurred around the world, which killed more than 0.8 million people, displaced millions more, and cost more than 1 trillion USD [7]. Losses due to disasters are increasing in both developed and developing countries. Human factors that increase exposure and vulnerability, such as poverty, rapid population growth, disorderly urbanization, corruption, conflict and changes in land use, poor infrastructure includes non-engineered housing, together with effects of climate change on weather patterns with increased extreme events, aggravate the negative consequences of natural and technological hazards. Disasters derail sustainable development, particularly in developing countries. Consequently, the need to embed disaster risk reduction into sustainable development goals is paramount.

G-Science Academies Statement 2016:

In the globalized 21at century, a disaster in one country creates diaruptions in others: the 2011 Thailand floods cut off car component factories and adversely affected car production in Europs; the 2004 Indian Ocean tsunami inundating the beaches of Thailand and killing more than 5,000 people including tourists caused the largest numbers of deaths from a natural hazard in Sweden's history; the 2006 drought in Syria was one of several contributing conditions that led to the current humanitarian roirsis; and the Great East Japan Earthquake in 2011 led to a tsunami, a nuclear facility malfunction, and economic effects worldwide. International events like these show the connection between diaster resilience and austainable development.

Decision makera need better tools to understand impacts of these types of crises, cope with natural hazards, respond to technological breakdown, and apply lessons from past experiences to improve emergency preparedness and capacities to manage crises. Science can contribute by deepening the understanding of hazards and improve ability to anticipate future emergencies and quantify impacts. Innovative engineering can decrease impacts and provide critical information for planning, rapid response and recovery. Furthermore, cascading effects of disasters require better understanding of connections, and strong international cooperation; at present, international collaboration in diaster risk reduction in on sufficient.

Key Direction

In 2015, the international community agreed on three major accords: the Sendai Framework for Disaster Risk Reduction 2015-2030 (Sendai Framework), the Sustainable Development Goals (SDGs), and the Paris Agreement on Climate Change (Paris Agreement). These agreements collectively present an urgent need and opportunity for action in 2016 and beyond. There are important connections among these agreements. For example, the SDGs and Paris Agreement identify actions that can build resilience against both meteorological and geophysical hazards. Also, the Sendai Framework embeds disaster risk reduction as an indispensable part of sustainable development through four of its priorities:

Priority 1: understanding disaster risk

Priority 2: strengthening disaster risk governance to manage disaster risk

Priority 3: investing in disaster risk reduction for resilience Priority 4: enhancing disaster preparedness for effective response and to "build back better" in recovery, rehabilitation, and reconstruction.

Increasing disaster resilience involves many stakeholders. To realize these priorities and to build resilient accieties, we need to maximize the use of existing knowledge and oresten ew types of science and technology that serve broad and collective societal needs. Building this new approach requires interdisciplinary research, collaboration, and cooperation among natural sciences; engineering; medical, social and political sciences; and the humanities. Transdisciplinary collaboration and excellent communication between scientists, practitioners, and policy-makers are essential.

With the increased scientific knowledge, innovation and technology, the scientific community can identify risks, evaluate system vulnerabilities, and become more effective in communicating the interconnected nature of disaster risk. Efforts are needed to strengthen national platforms for disaster risk reduction, and encourage or enable scientists and practitioners to work closely with relevant stakeholders in locally relevant contexts and language. Common. compatible, or even standardized disaster information resources and indices should be developed for easier exchange among different countries and regions. Integrated analysis of disaster data and information should be promoted to accelerate international cooperation and help countries identify the most impactful ways for bringing resources to a disaster, its risk reduction, or a response. These efforts will ensure interoperability among countries during multi-national responses, lead to better data on the costs of disasters, and greatly reduce losses through mitigation and resilience-building efforts.

Science is a human endeavor driven by an innate desire to acquire an ever-deeper understanding of the workings of nature and to meet human needs. Throughout history, scientists have continuously increased our knowledge of the world, and their innovations and inventions have immensely improved the human condition. Present-day society relies heavily upon science-based discovery, technology, and policies - whether in information systems energy management or disease control. Thus nurturing future generations of scientists is important for the development of society. How can nations best develop future generations of scientists? The major issues, outlined below. include improving education and career paths in science, encouraging social values in scientists to interact with society. and promoting a diverse workforce with opportunity for women, minorities, and scientists in developing countries. How these fundamental questions are addressed will have an enormous global impact on the future of science in and for society.

Connecting Scientists and Society

Promoting Science Education and Outreach

Science is an essential subject at all educational levels. Exposure to science at the pre-primary, primary and secondary levels is important for learning the values of evidence-based inquiry and for nurturing scientific thinking. This requires training of high-quality science teachers for all school levels and the design of attractive programs and innovative teaching methods. In higher education, students can learn to conduct research. explore specialized disciplines, and establish scientific integrity and professional principles to become responsible scientists in society. The study of science is beneficial for all students whether or not they continue on to scientific careers. Critical thinking and the scientific method should form the core of science curricula at all levels. Inquiry-Based Science Education requires active pedagogy where students become "young researchers" investigating nature and society. Interdisciplinary approaches to education instill versatility, flexibility, and creativity important for research and other careers

A key part of science education is learning the value and means of communicating science to the general public and policymakers. Education for Sustainable Development (ESD) [1] aims to provide benefits for society. In ESD, science education is a form of public outreach, improving scientific literacy and understanding of basic concepts related to human wellbeing (e.g. nutrition and public health), and increasing trust in science and scientists among citizens. This and similar efforts can promote the active involvement of non-scientists in scientific activities where appropriate and even accelerate open innovation. At the same time, science outreach experiences offer opportunities for scientists, particularly those in younger generations, to be conscious of "science in society" and learn to instill science as a way of life. A societal attitude favorable to science is also essential for stakeholders outside of the scientific community to be willing to contribute support for science.

Supporting Scientific Career Development

The future of science depends on education and support for younger scientista. However, in academia the prospects for their career development are challenging. The post-doctoral research (postdoc) stage is often a bottleneck for career advancement in developed countries due to insufficient principal investigator positions, while in developing countries such positions remain limited in general. Postdocs often are hired by senior research-grant awardees to work on specific projects on a abort-term basis, resulting in significant risk for their career choices. With limited academic career opportunities, the pressure to "publish or perish" for all researchers can create an adverse environment for career development, leading to dropout, or even misconduct.

Specific training and career patha need to be developed for doctoral-level researchers in economic sectors outside of academia, including industry, commerce, service, education, media, government and non-government organizations. Given diverse career paths, scientists can contribute to sectors of knowledge-based economies that place a high value on critical thinking, evidence-based decision-making, and technological and conceptual innovation. To enable alternate career patha, universities can provide young scientists with opportunities for self-assessment, learning transferable skills, and engagement with other sectors of society.

The evaluation of research productivity based on publications constitutes a series of crucial checkpoints in the career development of young scientists. The widespread indiscriminate use of single metrice (e.g. number of peer-reviewed publications or a journal's impact factor) is inappropriate for evaluation of scientists. Instead, balanced rigorous reviews by scientific experts assessing scientific production are recommended. Assessment should be based on multi-faceted criteria and research-evaluation guidelines such as DORA [2] as well as research-related activities usch as societal involvement. This would ensure scientist' productivity, creativity, and ability to take scientific risks and pursue interdisciplinary and transdisciplinary research.

Scientists' Roles and Responsibilities in Society

While the primary mission of scientists is to develop and critically examine new knowledge, and pursue innovation and social progress, they also are expected to learn, perform, and take leadership positions in other important roles and responsibilities and for society. First, scientists certify and systematize the acquired body of scientific knowledge and transmit it to the next generation. Second, scientists educate and mentor younger colleagues of successive generations and diverse backgrounds, to ensure the propagation of scientific values including critical inquiry and thinking, broad perspectives, and high ethical standards. Third, scientists get involved in outreach activities, communicate scientific developments to the general public, and engage citizens and young people who wish to improve their understanding of science [3]. The implementation of science and or a clainege with

April 2016

G-Science Academies Statement 2016

April 2016

Common statements of the G-sciences 2016