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Nematic Liquid Crystals

We use the notion of uniform distortion in the mathematical
theory of nematic liquid crystals to illustrate the interplay
between Elasticity and Geometry in Soft Matter.

lexicon

I Liquid crystals are anisotropic fluids.

I The nematic phase is typically produced by the ordered
assembly of elongated, rod-like molecules, which are on average
aligned along the director n.



I The director n is a unit vector; it resides in the unit sphere S2.

I Nematic liquid crystals are birefringent ; their optic axis
coincides with n and can easily vary in space.

I For rod-like nematics, a natural state is any uniform director
field, for which ∇n ≡ 0.

I Nematic liquid crystals are not polar ; the theories that describe
them must be indifferent to changing n into −n.

I A defect is a singularity of n.

I Defects are optically detectable.
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early statistical theories

The phase transition from isotropic to nematic—driven by
concentration (lyotropic) or temperature (thermotropic)—was
described by two pioneering theories:

I Onsager (1949): purely entropic ordering forces based on
short-range mutual repulsion of molecules.

I Maier & Saupe (1958): mean field model based on long-range
mutual attractive dispersion London forces.

I de Gennes (1969, 1971): Laundau theory based on a
tensorial order parameter.



Curvature Elasticity

The curvature elasticity of liquid crystals in three dimensions is
based on a free-energy functional introduced by Frank (1958),
which falls within the larger class envisaged by Ericksen (1962).

elastic free energy

The elastic free-energy functional measures the cost associated with
producing a distortion in a natural state.

F [n] =

∫
B

W (n,∇n) dV

B domain in space
V volume measure

W elastic free-energy density
W is frame-indifferent

W (Qn,Q∇nQT) = W (n,∇n) ∀ Q ∈ O(3)
W is even

W (−n,−∇n) = W (n,∇n)



Frank’s formula

The most general frame-indifferent and even function W that is at
most quadratic in ∇n was obtained by Frank (1958),

WF (n,∇n) =
1

2
K1(divn)2 +

1

2
K2(n · curln)2 +

1

2
K3|n× curln|2

+K24

(
tr(∇n)2 − (divn)2

)
Ki Frank’s elastic constants

K1 splay constant
K2 twist constant
K3 bend constant

K24 saddle-splay constant

Ericksen’s inequalities

WF (n,∇n) = 0 a.e. ∀ n ∈ H1(B;S2) iff

K3 = 0, K2 = K24, K1 = K24 = 0

Ericksen (1966)



Elementary Distortion Modes

Recently, a fresh look into this established theory has revealed
unexpected scenarios.

Machon & Alexander (2016), Selinger (2018)

distortion decomposition

∇n = −b⊗ n+
1

2
TW(n) +

1

2
SP(n) + D

S := divn splay scalar
T := n · curln twist pseudoscalar
b := n× curln bend vector

W(n) skew tensor associated with n
P(n) := I− n⊗ n projector tensor

D octupolar splay tensor

octupolar splay

D = q(n1 ⊗ n1 − n2 ⊗ n2)

q positive eigenvalue of D



identity

2q2 = tr(∇n)2 +
1

2
T 2 − 1

2
S2

The four components of ∇n are independent from one another.

I distortion frame : the eigenvectors (n1,n2,n) of D for q > 0.

I distortion measures: the list (S, T, b,D).

I distortion characteristics: the scalars (S, T, b1, b2, q).

b = b1n1 + b2n2

Frank’s free energy

WF =
1

2
(K11 −K24)S2 +

1

2
(K22 −K24)T 2 +

1

2
K33B

2 + 2K24q
2

B2 := b · b



Modes illustration

The four independent modes can be illustrated pictorially.
Selinger (2021)

splay mode

S 6= 0 T = 0 B = 0 q = 0

(double) twist mode

S = 0 T 6= 0 B = 0 q = 0



bend mode

S = 0 T = 0 B 6= 0 q = 0

octupolar splay mode

S = 0 T = 0 B = 0 q 6= 0



octupolar representation

An alternative representation, suggested by the octupolar splay mode,
is offered for all modes but the (double) twist by an octupolar
tensor . Gaeta & Virga (2016, 2019) Pedrini & Virga (2020)

A := ∇n⊗ n

· · · irreducible part of a tensor

octupolar potential

Φ(x) := A · x⊗ x⊗ x =
3∑

i,j,k=1

Aijkxixjxk

x = x1n1 + x2n2 + x3n on the unit sphere S2

Φ(x) =

(
S

2
+ q

)
x21x3 +

(
S

2
− q
)
x22x3 − b1x1x23 − b2x2x23

+
1

5

(
x21 + x22 + x23

)(
b1x1 + b2x2 − Sx3

)



polar plots

splay mode



polar plots

bend mode



polar plots

octupolar splay mode



Uniform Distortions

On a smooth (not necessarily flat) surface embedded in 3D
Euclidean space,

T ≡ 0 and D ≡ 0

geometric compatibility

K = −S2 −B2 −∇S · n+∇B · n⊥

K Gaussian curvature
∇ covariant derivative

n⊥ := Nn unit vector orthogonal to n
N skew tensor associated with ν

ν normal to the surface

Niv & Efrati (2018)

consequences

I The field n can be uniquely reconstructed from the sole
knowledge of S and B, provided that

|∇S + N∇B| > |S2 +B2 +K| Pollar & Alexander (2021)

I Only hyperbolic geometries can host uniform distortions in 2D.



questions

I How to define uniformity in 3D?

I Is it possible to fill space with a combination of uniform modes?

comment

Both questions border on the notion of eligible ground states meant
as the ones suffering no geometric frustration .

uniform distortion

A field n such that its distortion characteristics (S, T, b1, b2, q) are the
same everywhere, although the distortion frame (n1,n2,n) may not
be.

lost in space

For such a field, we could not tell where we are in space only by
sampling the local nematic distortion.



3D Euclidean space

There are only two families of possible uniform distortions that fill
3D Euclidean space:

S = 0, T = 2q, b1 = b2 = b

S = 0, T = −2q, b1 = −b2 = b

They correspond to foliations of 3D Euclidean space in parallel
helices. Virga (2019)

heliconical fields

The director n makes a constant conical angle θ with the axis of a
helix with pitch p:

cos θ =
|b|√

b2 + 2q2

p =
2π

|λ3|
λ3 = ±

(
2q +

b2

q

)



b/q = −1



b/q = 1



b = 0



Non-Euclidean 3D spaces

The quest for uniform distortions has recently been also conducted
in 3D Riemannian manifolds within Cartan’s moving frame
formalism. Pollard & Alexander (2021)

da Silva & Efrati (2021)

I Each pure distortion mode, characterized by a single
non-vanishing component of (S, T, b1, b2, q), can fill space
without frustration in at least one of the eight Thurston
geometries. Sadoc, Mosseri & Selinger (2020)

I It had already been shown that the double twist mode T 6= 0,
resulting in the frustrated cholesteric blue phases, can be
accommodated in a three-dimensional spherical geometry .
Sethna, Wright & Mermin (1983)

I Consider a 3D manifold with Riemannian tensor

Rijkl = R0(δikδjl − δilδjk)

If R0 > 0, the double twist mode is the only uniform distortion.
If R0 < 0, all uniform distortions provide a foliation of
space by non-parallel congruent helices.

da Silva & Efrati (2021)



Poincaré ball representation

B <
√
−R0 B =

√
−R0 B >

√
−R0

da Silva & Efrati (2021)



side view

B <
√
−R0 B =

√
−R0 B >

√
−R0

da Silva & Efrati (2021)



top view

B <
√
−R0 B =

√
−R0 B >

√
−R0

da Silva & Efrati (2021)



helices foliation

B >
√
−R0

da Silva & Efrati (2021)



helices foliation

B >
√
−R0

da Silva & Efrati (2021)



Generalized Elasticity

Uniform distortions are natural ground state candidates for
novel phases, irrespective of the free-energy model in use.

twist-bend phases

The heliconical distortion was first considered by Meyer (1976) as
a possible ground state, in view of its ability to fill space.

Recently, this phase has been found experimentally in bent-core
dimers.

Cestari, Diez-Berart, Dunmur, Ferrarini, de la Fuente,
Jackson, Lopez, Luckhurst, Perez-Jubindo, Richardson,
Salud, Timimi & Zimmermann (2011)

There is still an active debate on the origin of the phase, but its
existence is no longer questioned.

Samulski, Vanakaras & Photinos (2020)
Dozov & Luckhurst (2020)



microscopic picture

Dozov & Luckhurst (2020)

The modulated arrangement in a twist-bend phase is not
accompanied by a mass density wave .

Chen, Porada, Hooper, Klittnick, Shen, Tuchband,
Korblova, Bedrov, Walba, Glaser, Maclennan & Clark
(2013)



double-well free energy

WTB(S, T, b1, b2, q) :=
1

2
k1S

2 +
1

2
k2

(
T 2 + (2q)2

)
+

1

2
k3B

2

+
1

4
k4

(
T 4 + (2q)4

)
+

1

4
k5B

4 − k6(2q)Tb1b2

invariance requirements

(2q)T → −(2q)T b1b2 → −b1b2

objective form

2qb1b2 = curln · (∇n)b+
1

2
TB2



phase diagram

k3 = −2k5

k6
k2

Uniform constant Non-uniform bendNon-uniform bendNon-uniform bendNon-uniform bendNon-uniform bendNon-uniform bendNon-uniform bendNon-uniform bendNon-uniform bendNon-uniform bendNon-uniform bendNon-uniform bendNon-uniform bendNon-uniform bendNon-uniform bendNon-uniform bendNon-uniform bend Uniform twist-bend
Virga (2019)



Conclusions

I The notion of uniform distortion has been illustrated for liquid
crystals, but it is far more general: it can be applied to other soft
matter domains with order parameters of a different kind.

I The lack of uniformity in the ground state entails geometric
frustration , which results in residual stresses and
super-extensivity of the free-energy functional, which may
cause defects to arise. Meiri & Efrati (2021)

I Chromonic liquid crystals, which are dyes widely used in the
food industry, are frustrated as their ground state is the pure
double twist T 6= 0, which is not uniform.

Paparini & Virga (2021)
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Addendum: Quasi-uniform distortions

A distortion is quasi-uniform if its characteristics are in constant
ratio to one another. Pedrini & Virga (2020)

The distortion landscape is the same everywhere, to within a scaling
factor depending on position .

simple examples

These distortions are all universal solutions according to
Ericksen (1967).



non-universal ones

more generally

Any unit vector field which is a constant combination of

e1 = cos g(z)ex+sin g(z)ey, e2 = − sin g(z)ex+cos g(z)ey, e3 = ez

g(z) antiderivative of the scaling function

quasi-uniform heliconical

cos θez + sin θ(cos g(z)ex ± sin g(z)ey)

Pollar & Alexander (2021)
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