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Quantum Simulation major research field across platforms:

T J —T"BIGCh & M. Greiner Nat. Rev. Phys. (2022)

Mott Insulator

Pre-quantum gases optical lattices: A. Hemmerich & T.W. Hansch (LMU) / S.L Rolston & W.D. Phillips (NIST)

Applications in Many-Body Physics

m @ State Preparation/Engineering and Detection

Manipulating the Orbital Bloch Sphere

m @ Strongly Correlated Electron Physics & Quantum Gates
= AFM, Polarons, Pseudogap, Quantum Gates, Towards Bilayers...

m @ Outlook

Quantum Simulation

Quantum Computing & Simulation
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Introduction Primer on Optical Lattices

t/h ~100Hz — 5kHz
V'

optical standing wave

w ~ 27 x (10kHz — IMHz)
o ~ 10nm — 100 nm

laser
«—>

a=250nm — 1 ym

Fourier synthesize aribtrary
lattices:

* Square

» Hexagonal/Triangular/Brick Wall
* Kagomé

* Superlattices

« Spin dependent lattices

* Flux Lattices

Full dynamical control over lattice depth, geometry, dimensionality!

D. Wei et al. Phys. Rev. X 13, 021042 (2023), recently used: M. Prichard et al. Nature 629, 323 (2024) (Princeton)
related: D. Greif et al. Nature 535 217 (2014), M. Xu et al. Nature 620, 971 (2023)

[LMU

W. Bakr et al., Science (2010)
J. Sherson et al., Nature (2010)

The dance of electrons
inside a material!

Potential Shaping

Flexible Geometries and Large Sizes
Quantum Ladders with

flexible edge geometries
(SPT Spin-1 Haldane Phase)

Res8808 8o

Large Homogeneous 2D Systems
(2000-5000 atoms, filling 95-98%)

J
a DMD shaped potential Tilted-edge ladder
L[S |
y [ FerEis
L.x
Cs Quantum Gas
Microscope
Fully tuneable coupling strengths
+dimensionality +flux +frustration
Rb Quantum Gas see also: C. Chiu et al. Phys. Rev. Lett. 120, 243201 (2018)
P. Sompet et al. Nature 606, 484 (2022) Microscope Idea: J.-S. Bernier et al. Phys. Rev. A 79, 061601 (2009)
Tweezer SPT: Léséluc et al. Science 365, 6455 (2019)

T-L. Ho & Q. Zhou arXiv:0911.5506



4 Full'Spin & Density Resolved Detection

FHM Microscope

Mono- Spin Charge
layer . splitttina ' pumnina.
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Snapshots where each “electron” is visible

Density and spin readout: M. Boll et al. Science 353, 1257 (2016), J. Koepsell et al. Phys. Rev. Lett. 125, 010403 (2020),
see also: Harvard (Greiner), Princeton (Bakr) Phys. Rev. Lett. 129, 123201 (2022), MIT (Zwierlein) Science 381, 82 (2023)

Orbital BS

Pogramable Orbital Rotations using Superlattices

Measurement scheme

Xx-rotation
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“Orbital Bloch sphere”

Orbital BS

Progrfnmable Orbital' Rotations using Superlattices

Measurement scheme

Optical superlattices

2 =
Bong
1 Project onto
s isolated double wells

J

A. Impertro et al.

Phys. Rev. Lett. 133, 063401 (2024)

see also SC qubits:

B. Du, R. Suresh, S. Lépez, J. Cadiente, R. Ma,
Phys. Rev. Lett. 133, 060601 (2024).

Orbital currents (earlier work):

M. Atala, ... & I. Bloch, Nat. Phys. 10, 588 (2014).

A. M. Kaufman, ... & M. Greiner, Science 353, 794 (2016).

Spin currents: C. Schweizer, M. Lohse, R. Citro, . Bloch Phys. Rev. Lett. 117, 170405 (2016) 8 LMU
Fermions: T. Chalopin,..., I. Bloch, T. Hilker Phys. Rev. Lett. 134, 053402 (2025). —

Vi
Y

Artificial Gauge Field

Ground State Interacting Flux Plaquette

140 plaquettes!
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Applications in Many-Body Physics

0 State Preparation/Engineering and Detection
Manipulating the Orbital Bloch Sphere

@ Strongly Correlated Electron Physics & Quantum Gates
AFM, Polarons, Pseudogap, Quantum Gates...

2 Probing Many-Body Quantum Dynamics using
Subsystem Loschmidt Echos

3 Outlook

Potential Shaping

Idea: max

T-L. Ho, Q. Zhou, arXiv:0911.5506
J.S. Bernier et al. Phys. Rev. A (2009)
related: B. Yang et al. Science (2020)

DMD potential
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2 4 6 8 10
d [sites]
Theory QMC

Z. Wang, L. Pollet (LMU)

T/t ~0.25 T/J ~ 0.4
Ult=6.5 t1J ~ 1.6

low Temp: T/t=0.1: M. Xu, ...M. Greiner, Nature 642, 909 (2025)

Fermi Hubbard 4 ' Fermi Hubbard Model (FHM)

Fermi-Hubbard Model [

u N
A=—t Y & +UY tih;,
t (i) i

B. Keimer et al.,, Nature 518 2015

Strange metal

2D Spin Correlations

Bulaevskii, L. N., Nagaev, E.
S. A. Trugman, Phys. Rev.
J. R. Schrieffer, X. G. Wen &
C. Kane, P. Lee & N. Read
B. D. Simons and J. M. F. Gunn, 3
P. Lee et al., Rev. Mod. Phys. 78 (2006)
K. K. Nielsen, M. A. Bastarrachea-Magnani, T. Pohl, & G. M. Bruun
Phys. Rev. B 104, 155136 (2021)

See also: Harvard: Parsons et al., Science (2016), Mazurenko et al. Nature (2017), /'A
MIT: Cheuk et al., Science (2016), Princeton: Brown et al., Science (2017), | (
Bonn: Drewes et al., PRL (2017), Rice: A. Hart et al. Nature (2015). \4 I.Mu

<
AFM Heisenberg Model = 20
Half filling & strong interaction 2 ,
8
2 o1
100 order
Spin
order
42 s, !
H=]Y'S;-S; =1 e, o

Away from half filling: t-J model Hole dope 0

competition between
[ hole delocalization ) And (magnetic order)

A. Maruzenko et al. Nature (2017), M. Boll et al. Science (2016), T. Hilker et al. Science (2017),
L. Cheuk et al. Science (2016), P. Brown et al. Science (2017)

Polarons

Holes cannot move freely in 2D - holon and spinon are bounr

Energy (vJ)
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Magnetic polaron is formed!

ind - CONFINEMENT!
and Holon form “Parton”

it et al., PRX 8, 011046 (2018)

J. Koepsell et al. Nature 572, 358 (2019) & J. Koepsell et al. Science 374,
yS. Rev. B 41,7019 (1990) See also recent results on frustrated systems: Pril
related: imprints of string patterns Ch. Chiu n?

attractive U: T. Hartke et al. Scie

Esslinger, T. Fermi-Hubbard Physics with Atoms in an Optical Lattice.
Annu. Rev. Cond. Mat. Phys. 1, 129-152 (2010).

Polaron Formation in 2D

ole leaves frustrated bonds

D. Simons Phys. Rev. B 42, 4370 (1990)



Polarons Spatial Image of Magnetic Polaron
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510.04756 (2025).
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J. Koepsell et al. Nature 572, 358 (2019)
J. Koepsell et al. Science 374, 82 (2021)
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Y. Zhang,
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QMC Numerics
Z. Wang & Lode Pollet
Quantitative Match!

Three point hole-spin-spin correlator
(connected & symmetrized)

Kinetic Induced Polarons on Triangular Lattice:
M. Greiner Nature 629, 317 (2024) (Harvard)
W. Bakr Nature 629, 323 (2024) (Princeton)

wEsEARCH

RESEARCH ARTICLE

HUBBARD MODEL

Origin and fate of the pseudogap in the doped
Hubbard model

uid) ot b 0, et e, G 14t o

Mind the pseudogap

The Pseudogap
(x10000 papers)

The pseudogap metal
and
FL* (a “topological” Fermi lig

The pseudogap: friend or foe of high 7" . ?
R 5 P & €

dQmC

/ Dpe=5@ = 3 det(1 + &)

Strange metal

T

C.onset, -~ ~

SC, onset

Charge T,
order =

order N

L Fermi
Theoretical methods NS, 5 liquid

Collaboration with: A. Georges & A. Wietek (METTS), L. Pollet & Z. Wang (QMC), A. Bohrdt & F. Grusdt (Geometric Strings)

Birth and Death of Polaron in 2D

Spinon-Holon
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Earlier results, see: J. Koepsell et al. Science 374, 82 (2021) Exp. Data

Equivalent on attractive side: T. Hartke et al. Science 381, 82 (2023)

Fermi Hubbard

Pseudgap Phenomenology

. - . [@ 1 ]
1) Decrease of magnetic susceptibility with T . h*"’;. e |
H. Alloul, T. Ohno, & PY. Mendels Phys. Rev. Lett. 63, 1700 (1989) 1¢ |

D.C. Johnston Phys. Rev. Lett. 62, 957 (1989)

Original detection

T

A. Wietek et al., Phys. Rev. X 11, 031007 (2021)

2) Partial suppression of density of states /
low-energy excitations in selective regions of the Brillouin zone

Violation of Luttinger Theorem! v/

NS

R. Ros§i et al. EPL 132, 11001 (2020)

see also: F. Simkovic,..., A. Georges, M. Ferrero
Science 385 (2024).

Recent review: M. Qin et al. Annu. Rev. Condens. Matter Phys. 13, 275 (2022)



FHM Magnetic Correlations under Doping

Staggered Magnetization
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T. Chalopin et al. PNAS 123, 2525539123 (2026)

Doped FHM Magnetic Correlation Length Pseudogap Temperature Dependence
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S. Chakravarty, B. Halperin & D.R. Nelson Collapse under -03 -02 -01 00 041 02 03
Physical Review B 39, 2344 (1989) Rescaling! ;
T. Schéfer et al. Phys. Rev. X 11, 011058 (2021) 9 Dong i




Higher;O?der Correlators
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FHM Square Lattice Model - Phases (Low Doping)
How to bind with purely repulsive
0.25 - Decreasing Spin Susceptibility & What is the physical mechanism for the Pseudogap? i 1] te ra ct i on S?
. ™ Fermi Surface Reconstruction

T. Chalopin et al. PNAS 123,
2525539123 (2026

oy (non standard binding mechanism)

Microscopic

-Space
Macroscopic RQeSzlanst‘i)ti s
* Thermodynamics
~ Quantities Hidden Order.
. Correlations,
Conductivity, Compressibility: Higher Order =2
3 :

. Fluctuations
Magnetization, -.--

icroscopes

via magnetic correlations!

M. Xu, ...M. Greiner,
Nature 642, 909 (2025)
H. Xu, H. Shi, E. Vitali, M. Qin, and S. Zhang J low Temp: T/t=0.1

Phys. Rev. Research 4, 013239 (2022) P st wre (~-
> /| LIMU

0

H.J. Schulz Phys. Rev. Lett. 64, 1445 (1990)




Hole - Attraction

Do two holes in an antiferromagnet form a bound pair?

Magnetically induced
hole-hole attraction

113111

Jy

[ Does this lead to pairing on rungs? ]

ee0e
o000

Hole motion frustrates spin order

But kinetic energy
disfavours rung pairs!

Magnetic energy advantages of hole pair: ~ J |
S. Hirthe et al. Nature 613, 463 (2023)

PHYSICAL REVIEW LETTERS 132, 036502 (2024)

©om

Bilayer £-J-J , Model and Magnetically Mediated Pairing in the Pressurized Nickelate LayNi,O;

Xing-Zhou Quo,'*" Dai-Wei Qua,'*" Jialin Cheno, " Congjun Wu.***" Fan Yang." Wei Lio,"**" and Gang Suo'*!
i "Kavii Instituse for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
*CAS Key Laboratory of Theoretical Physics. Instinate of Theoretical Phyrics. Chinese Academy of Sciences, Beljing 100190, China
“Hefei National Laboratory, Hefel 230085, China
‘New Comerstone Science Labarasory, Department of Physics. School of Science. Westlake University, 310024 Hangzhou. China
*Instinute for Theoresical Sciences, Westlake University, 310024 Hangzhow, China
“Key Labovatory for Quantum Materials of Zhefiang Province, School of Science,
< Westlake University, Hongzhou 310024, Zhcjiang, China
Institute of Natural Sciences, Westlake Institute for Advanced Study, 310024 Hangzhou. China
'Schoot of Physics, Bejjing Instisuie of Technology, Beijing 100081, China
"CAS Center fur Excellence in Topological Quantem Computation, University of Chinese Academy of Sciences, Beijing 100190, Ching
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See also: Hanbit Oh and Ya-Hui Zhang

Mixed dimensional model explains high Tc!
Phys. Rev. B 108, 174511
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Stripe formation in 2d systems

D. Bourgund et al. Nature 637, 57-62 (2025).
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Pairing confirmed in 2D
Structure formation beyond pairing!
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From Analog to Digital

FermiQP

Tweezer Collisional
transport gates

Raman
transitions

¢ Y

‘Qubit Operations

Single Atom Addressing

Weitenberg, ... Bloch, Nature 471 319 (2011)
Xia, ..., Saffman, PRL 114 100503 (2015)
Atom Computing, Nature Communications (2022)

Collisional Gates
Anderlini, .., Porto, Nature 448 452 (2007,
Trotzky, ...., Bloch, Science 319 295 (2008)

Kaufmann, ..., Regal, Nature 527 208 (

Yang, ..., Pan, Science 369 550 (2020)
Zhang, ...., Pan, arxiv 2210.02936

rt of

Mandel, ..., Bloch, PRL 91 010407 (2003)

Vala, ... Whaley, PRA 71 032324 (2005)

Baredo, ..., Browaeys, Science 354 1021 (2016)
Robens, ..., Alberti, PRL 118 065302 (2017),
PRA9 034016 (2018)

Bluvstein, ..., Lukin, Nature 604, 451 (2022)
Young, ..., Kaufmann, Science 377 885 (2022)
Trisnadi, .., Chin, Rev. Sc. Instr. 93 083203 (2022)

1) Single-qubit
£ gate [14) 5

Quatum reigister
T. Hartke, ... M. Zwierlein.
Nature 601, 537 (2022)

Two-qubit
gate

LMU

FermiQP

J. Argiiello-Luengo, A. Gonzalez-Tudela, T. Shi, P. Zoller, J. I. Cirac,
Analogue quantum chemistry simulation. Nature 574, 215 (2019)

QC

Fundamental Building block:
Double well with spin-1/2 particles

Demonstration Entanglement :  Zhang, ..., Pan, arXiv 2210.02936 (2022)
Collisional gate with tweezers: Kaufmann, ..., Regal, Nature 527 208 (2015)
Proposal Fast gate in harm. osc.: Nemirovsky, Sagi, PRR 3, 013113 (2021)

Chemistry or Digital

0ox

using Fermions

Quantum chemistry Ultracold termion systems

fermionic statistics

quantum numbers
particle number N, magnetization S,, total spin S

Fermionic circuits

L B B 4
b4 o =P

Precompiled
subroutines

S.B. Bravyi & A. Kitaev
Annals of Physics 298, 210-226 (2002)
D. Gonzélez-Cuadra et al. PNAS 120, 2304294120 (2023)
F. Gkritsis et al. PRX Quantum 6, 010318 (2025),
R. Ott et al. arXiv:2412.16081

~ Collisional Gates

Early experiments in tweezers:

S. Murmann,...., Jochim, PRL 114, 080402 (2015).
A. Bergschneider,..., Jochim, Nat. Phys. 15, 640
(2019).

99.3(1)% Gate Fidelity on 1250 atom paris
96% microscopically resolved

i e
i

B. Yang, ..., J.-W. Pan, Science 369 550 (2020)

10 fully entangled qubits

Zhang, ..., Pan, PRL arXiv 2210.02936

Jr 421U

N

LMU‘



QC Spin Exchange QcC SWAP Gate

Experimental protocol Spin exchange SWAP Gate o O et
1ol X 2 o L :
State preparation Gate Detection ° [ ,; o (1 0 0 0 Py £ 0 Mg
o [ '_ I = 0.
ﬁ ] plane 1 '§ w 0t 0 0 < ng'-ua £ b rm_._ala
3 R (a) = \o/\./ 00 L 10 50, T 500, T Blackman
W H SWAP 5 5 iPro § ramp L, i pise
m = | @@ |— (o] < L& L Ayue) SIN AW
Y= 1,1) \9\'/ 00 Pogy & 6, bl 889 AT 0r . 0 T
plane 2 2 2 1Y 8750507 0080 : i
5 A = pr No additional phase 0.0 0.1 0.2 0.30. 0.1 0.2 0 1 2 (mﬁs) 4
Toulse
) L ; ; P P (
Long lived oscillations: Avoid Doublon population : @ A see also:
o o o uo o5 w0 11 s s w0 a0 N 14) ——d geometric gate in dynamical lattices
§1oF : " W - : S : 1. Llrgllt U/Z, > 1 0.90 Y. Kiefer, ... K. Viebahn, T. Esslinger
L o.si\ i }j ﬂ . o . NN + Slow dynamics : arXiv.2507.22112.
g o L N . N
& 0.l « Remaining error ~ (U/1)? 0.85 Global detection: 99.91(7)% Fidelity
9 @ Jm=arxageu B 2. Magic ratio U/t = 4/\/§ 5 \
Rabi frequency: J/A = 2z x 3.32(3) kHz g . ratSP: dynar;;ics . a 1
. ) _ * Intheory: No gate error
Gaussian decay of contrast: 7., = 33(2) ms « Sensitive to timing and interaction strength F = 99.80(6)% "
Fidelity of 7-Pulse >99.9% ) 3. Slow ramps VSWAP

- 0.75
* Intermediate time scales 0 4 8 12 16 20

30
« In theory: No gate error Number of VSWAP gates Y
U * Robust to experimental imperfections \‘ U

Limiting factors:
 Tunneling out of double well
« Lattice inhomogeneities — local variations in Rabi frequencies

Digital QC with Fermions

Bell State Entangled State Coherence FermiQP sopetti
‘ Muowk" o3Pt

i et T gt O T
Si 3 wassan Jn O DS
. . . . e T T )
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A Joint Look Ahead... Practical

simulation

Quantum Simulation & Computation Platforms
(Atoms, lons, SC Qubits, Photons. NV Genters...)

Where Next?

(Digital)
Circuit Model
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A new era of Quantum Many-Body Physics
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Continuous Loading in Action

Quantum Universe in a Lab

Particle Physics
Continuously operated array for up .
to 1.5h with > 1200 atoms

Readily scalable to >10,000 atoms
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