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Some personal memories
My personal memories of Enrico Fermi are “at second order”
I have closely interacted with two Fermi’s collaborators:

@ Ugo Fano (theoretician), the last of “Rome Via Panisperna boys” (emigrated to the
USA before WW2), was my supervisor and mentor at the University of Chicago (1974-78)

:’mf Ugo Fano with graduate students Costas Theodosiou; post-doc Tu-Nan Chang; and brand new graduate student, Giancarlo
trinati

Just entering Graduate School at the University of Chicago (Sept. 1974)



Some personal memories

@ Herbert Anderson (experimentalist), Fermi’s first graduate student in the USA
(at Columbia University) and then Fermi’s close collaborator up to Fermi’s last days (1954)

Fermi and Anderson (next to Led Szilard, next to Leona Woods) in front of
the Eckhart Hall at the University of Chicago



Some personal memories

Anderson supervised my experimental course at the University of Chicago

=== : s

Visiting Fermilab (Batavia) in July 1975

| had the option of becoming a theoretician (with Fano)
or an experimentalist (with Anderson)

— | ended up being Fano’s student and then post-doc



Meeting with Laura Fermi

Through the Fanos, | had also the opportunity of meeting with Enrico’s wife Laura,
who told me a few personal memories about her life with Enrico - - -

In that occasion, | asked Laura to sign my own copy of Enrico’s last Lectures Notes
at the University of Chicago (1954):

NOTES ON

Quantum Mechanics

A Course Given by ENRICO FERMI
at The University of Chicago

[I will be back to this booklet shortly]



The emergence of the BCS-BEC crossover

Several years later (about 2003), | came across the emerging field of

the BCS-BEC crossover with ultra-cold Fermi gases

= a continuous evolution was experimentally realized

from weakly-bound strongly overlapping Cooper pairs (BCS)

to  tightly-bound dilute dimers undergoing Bose-Einstein condensation (BEC)

overlapping Cooper pairs dilute composite bosons
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Evolution from BCS to BEC, passing through “unitarity”

[Co-workers in this enterprise: Pierbiagio Pieri, Andrea Perali, - - -]



The Fano-Feshbach resonances

An essential experimental tool <= the Fano-Feshbach resonances:
the scattering length ar for the two-fermion problem can be varied at will
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from 0~ (free fermions) to 0% (strongly bound fermions)

The other relevant length scale = average inter-particle distance — «—

inverse of Fermi wave vector kr = (3712n)1/3 (n = particle density) —
' ranging from (ke ag)™' < -1 (BCS regime, ar < 0)

to (krar) ' 2 +1 (BEC regime, ar > 0)

coupling parameter (krar)~

across unitarity, |ar| = co



Original Fermi’s drawing for the scattering length

The concept of scattering length was introduced by Fermi in the thirties, to explain some
experimental results by E. Segré on atomic spectroscopy [E. Fermi, Sopra lo spostamento
per pressione delle righe elevate delle serie spettrali, Nuovo Cimento 11, 157 (1934)].

Here is Fermi’'s hand-drawing from his last course at the University of Chicago (1954):
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[From E. Fermi, Notes on Quantum Mechanics (The University of Chicago Press, Chicago, 1961), page 33-3]



A remark from the original BCS article (1957)

The original BCS article [Phys. Rev. 108, 1175 (1957)] was rather negative about
the connection between superconductivity and BEC.

Here is footnote 18 from this article:

“Our picture differs from that of Schafroth, Butler, and Blatt*), who suggest that pseudo-
molecules of pairs of electrons of opposite spin are formed.

They show if the size of the pseudo-molecules is less than the average distance between
them, and if other conditions are fulfilled, the system has properties similar to that of a
charged Bose-Einstein gas, including a Meissner effect and a critical temperature of
condensation.

Our pairs are not localized in this sense, and our transition is not analogous to a Bose-
Einstein condensation.”

() M. R. Schafroth, S. T. Butler, and J. M. Blatt, Quasi-chemical equilibrium model
to superconductivity, Helv. Phys. Acta 30, 93 (1957)



The “underlying” Fermi surface
What BCS had in mind to emphasize was that, for the weak-coupling superconductors
known at the time,

the “underlying” Fermi surface is an essential ingredient of the theory
(although somewhat “blurred” and not sharp like in a normal Fermi liquid).

However, in the BCS-BEC crossover

the underlying Fermi surface “collapses” upon approaching the BEC limit:
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BCS (mean-field) description of the ground state

Notwithstanding the BCS comment, the BCS (ground state) wave function
[®pcs) = Tk (U + viGi; €Ty, ) 10) o< exp| Tk geey ¢y | 109
contains the BEC limit (at T = 0). Here,

b = Tk gkGicly,  With  [bo, bJ] = Sk lakP(1 = nig — noiy)

is not a truly bosonic operator. Yet,

it may happen that bo,bT =1 & (Ppcs|nke|PBcs) = nk < 1 forallk
0

u/EF—O99 — ]

08 |

0.6

Ny

04 b

0.2

0 0.5 1 L5 2 2.5 3
& /Eg

Evolution of the occupation number ny for different values of the chemical potential j



The special role played by the chemical potential

As shown in the previous figure, the chemical potential «— a driving field
that induces an evolution BCS «— BEC
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Note however that in the BEC limit of the BCS wave function:

o the pair “internal” degrees of freedom are frozen with zero center-of-mass momentum
-

e the condensate is accounted for, but the non-condensate with non-zero center-of-
mass momenta is not B

o the need arises to include (beyond-mean-field) “pairing fluctuations” =

e the t-matrix approach for “dilute” fermions with short-range attraction is a candidate



Beyond mean-field — the t-matrix approximation

Scattering of two fermions in the presence of the medium through which they propagate

= the t-matrix approximation was

o originally formulated by Galitskii (1958) for a repulsive interaction

o later extended by Gorkov & Melik-Barkhudarov (1961) to an attractive interaction
to deal with fermionic superfluidity (in the BCS limit only)

o first applied to the BCS-BEC crossover by Noziéres & Schmitt-Rink (1985)
to recover the correct value of the critical temperature in the BEC limit

Here is the diagrammatic representation of the t-matrix :
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The “underlying” Fermi surface — the Luttinger wave vector

e The “Luttinger wave vector” k; highlights the presence of an underlying Fermi
surface in the single-particle excitations -

the last remnant of what would be a Fermi-liquid description of a Fermi gas

o look at the w-structures of the single-particle spectral function A(k, w) for given k

o fit the dispersions of the peaks at w > 0 and w < 0 with the BCS-like expressions
e Ko\
+
w)(k) = (ﬁ - Zm ) + A%

Apex) «— pseudo-gap energies for the upper (+) and lower (-) branches

= identify k() for the “up-bending” upper branch

k(- for the “down-bending” lower branch (KL(4) < k(o))
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An experimental confirmation

ARPES-like experiments with ultra-cold trapped Fermi gases
(work in collaboration with Debbie Jin group(*))
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coupling dependence of the Luttinger wave vector ki at T,

experiment (squares) theory (solid line)

() A Perali, F. Palestini, P. Pieri, G. C. Strinati, J. T. Stewart, J. P. Gaebler, T. E. Drake, and D. S. Jin,
Evolution of the Normal State of a Strongly Interacting Fermi Gas from a Pseudogap Phase to a Molecular Bose Gas,
Phys. Rev. Lett. 106, 060402 (2011)



Self-consistency for the t-matrix — to be or not to be !

¢ |n diagrammatic many-body theory, calculating a self-energy up to full self-consistency

is a debated issue — the t-matrix approximation makes no exception !

[M. Pini, P. Pieri, and G. Calvanese Strinati, Fermi gas throughout the BCS-BEC crossover: Comparative
study of t-matrix approaches with various degrees of self-consistency, Phys. Rev. B 99, 094502 (2019)]

e A pragmatic way to settle this issue would be to compare alternative calculations
with the available experimental data

e For instance, for the critical temperature T, at unitarity one obtains:
non-self-consistent t-matrix calculaton — T./Tr ~0.24

fully-self-consistent t-matrix calculation =— T./TF ~0.16
(Tr = Fermi temperature)

to be compared with the experimental value T./Tf ~0.17

o However, additional diagrammatic contributions may influence the value of T; !



The “original” Gor’kov & Melik-Barkhudarov contribution
The diagrammatic contribution considered by Gor’kov and Melik-Barkhudarov (GMB)*
(but only in the BCS limit) modifies the BCS value of T, by a factor of 2.2 ==
it is thus appropriate to “extend” the GMB contribution to the whole BCS-BEC crossover

&= exploit a main advantage of the diagrammatic theory for being “modular” in nature !

The critical temperature T, is determined from the normal phase via the Thouless criterion
=

look for divergences at long wavelength of the static ladder propagator °(Q = 0)

* L. P. Gor'kov and T. M. Melik-Barkhudarov, Contribution to the theory of superfluidity in an imperfect Fermi gas,
Sov. Phys. JETP 13, 1018 (1961)



The “extended” Gor’kov & Melik-Barkhudarov contribution

Improve on the Thouless criterion by dressing °(Q) with “bosonic-like” self-energies
= above T, the “extended” GMB contribution amounts to inserting the following

(bosonic-like) diagrams in the ladder propagator

Q-Q-k
Qo
k+Q k+Q
(@)
-k
p-k+Q p+q-k+Q q-k+Q

[the upper diagram accounts for some degree of self-consistency in the t-matrix]

Include the full wave-vector and frequency dependence of all I'% in these diagrams
—  the GMB approach is “extended” to the whole BCS-BEC crossover



A novel approach to the gap equation

Below T, the “extended” GMB contribution determines the gap equation directly in
the two-particle channel <=  Hugenholtz-Pines condition for fermion pairs
(analogy with point-like bosons)

kK kK
Kk k" k'K

XX

[numbers attached to vertices «— Nambu indices]



Comparison with experiments - pairing gap

Low-temperature pairing gap from BCS to BEC
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Pisani et al., 2018 (T = 0.03T¢)
Haussmann et al., 2007 (T=0)
Schirotzek et al, 2008
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Measurements of the low-temperature pairing gap A across the BCS-BEC crossover for
a balanced spin mixture of an ultra-cold gas of 8Li atoms (note the sign change for the
inter-particle coupling). Comparison with three theoretical results is also reported.

From Fig. 3 of H. Biss, L. Sobirey, N. Luick, M. Bohlen, J. J. Kinnunen, G. M. Bruun, T. Lompe, and H. Moritz,
Excitation spectrum and superfluid gap of an ultracold Fermi gas, Phys. Rev. Lett. 128, 100401 (2022).



Comparison with experiments - critical temperature

Critical temperature from BCS to BEC
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Measurements of the critical temperature T, for an ultra-cold Fermi gas spanning

the BEC-BCS crossover are compared with the results of theoretical calculations:

o fully-self-consistent t-matrix approach (dashed-dotted line —-—-—- )
)

From Fig. 2 of M. Link, K. Gao, A. Kell, M. Breyer, D. Eberz, B. Rauf, and M. K&hl,
Machine learning the phase diagram of a strongly interacting Fermi gas, Phys. Rev. Lett. 130, 203401 (2023).

e extended GMB approach (full line



Comparison with experiments - superfluid fraction

Superfluid fraction vs temperature at unitarity:
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Measurements of the temperature dependence of the superfluid density for a Fermi gas
at unitarity are compared with the results of theoretical calculations:
e non-self-consistent t-matrix approach (dashed line ———-)

)

From Fig. 4 of M. Frometa Fernandez, D. Hernandez-Rajkov, G. Del Pace, N. Grani, M. Inguscio, F. Scazza, S. Stringari,
and G. Roati, Angular momentum of rotating fermionic superfluids by Sagnac phonon interferometry, arXiv:2511.02664v2.

e extended GMB approach (black full line

n.b. In all cases, the extended GMB calculations are with no adjustable parameter



Extension to inhomogeneous situations

All considerations thus far were for homogeneous systems.
In practice, inhomogeneous situations are abundant and important.

Typically, a barrier is required for the Josephson effect with ultra-cold Fermi atoms.

A simplified situation:
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A realistic situation:




The Local Phase Density Approximation (LPDA)

Fermionic superfluids in inhomogeneous environments = BdG equations are often used

However, their solution may become prohibitive <= exceeding computation time and
memory space <= first calculate a lot of spatial details and then average over them !

To overcome these difficulties = apply a coarse graining on the BdG equations

obtain a (non-linear) differential equation for A(r)

throughout BCS-BEC crossover

—

< generalize

e the Ginzburg-Landau (GL) equation for strongly overlapping Cooper pairs
o the Gross-Pitaevskii (GP) equation for dilute composite bosons

This (LPDA) equation holds over a wide region of the temperature-coupling phase diagram:

e
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A further step: beyond the LPDA — the mLPDA

One would also like to include pairing fluctuations within the LPDA approach —

e keep the formal structure of the LPDA equation

e modify the expressions for the local particle density and current
where the effects of pairing fluctuations are included

obtain the mLPDA approach (m « modified)

_—

BCS pairing theory for
homogeneous system

Eqs. for GAP - DENSITY - CURRENT

BdG theory: mean-field for t-matrix theory: pairing fluctuations
inhomogeneous systems forhomogeneous system
Eqs. for GAP - DENSITY - CURRENT Eqs. for GAP - DENSITY - CURRENT

Double coarse
graining

Local Density

Approximation (LDA)

Local Phase Density
Approximation (LPDA)

Eqs. for GAP - DENSITY - CURRENT

LDA version of t-matrix

modified LPDA: mLPDA

Eqs. for GAP - DENSITY - CURRENT



Comparison with experiments - the Josephson effect

LPDA N, =140k T/Tt
MLPDA Ny, =140k T/T]
mLPDA Ny, =100k T/T¢

GPag=2a; Ny=1
GP a=0.6aF Ny =1
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(a)‘ Critical current vs trap coupling for three barriers of same
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— shaded areas spanned by numerical calculations.

' (c)‘ | In (a), ¢ and ¢ correspond to a simplified version of the
Vo/Ef =0.53
0041 7 extended GMB approach.
] [Experiment: W. J. Kwon et al., Science 369, 84 (2020)]
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Thank you for your attention !



