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This talk will be about the origin of pseudogap in the el-doped cuprates
and the interplay between pseudogap and superconductity
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Pseudogap: the range of dopings and temperatures where
there is no “conventional” order, yet the system behavior is
different from that in a metal, even a strange one,
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Initial idea (mid/late 90"): pseudogap is a precursor to superconductivity

Cooper pairs are formed, but their phases are not yet correlated
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Borrowed from the ideas about BCS to BEC crossover

M. Zwierlein (yesterday), S. Giorgini, G. Calvanese Strinati (today)
Emery & Kivelson; Campuzano, Kanigel, Norman, Randeria ....
Johnson, Fink, Borisenko....

No direct correlation between pseudogap T* and SC Tc



Fast forward to 2026

Three key ideas about pseudogap:
A. It is a new state of matter
A phase with a topological order
S. Sachdev FL*, M. Fabrizzio...
B. It is a state with a “less conventional” order, bilinear in fermions

C. Varma, Loop current order

C. Itis a precursor to a “more conventional” ordered state

Spin density wave Charge density wave Nematic

A. Finkelstein, W. Metzner, A.C. M. Grilli, C. di Castro C. Castellani, W. Metzner, R. Fernandes, E. Berg..
S. Caprara, ,J. Lorenzana, ....

In A,B FS gets reconstructed from a large one to small pockets (1-x to x)
In C, no FS reconstruction, but the shape of the spectral function changes
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Hole-doped cuprates — complex systems with many competing degrees of freedom
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« Magnetic fluctuations are peaked at (w,n)
el - Magnetism holds up to larger dopings
* Charge fluctuations and phonons are less relevant

| 1 f
-0.2 -0.1 0
doping

T (K)
5

Spin fluctuations in the driver’s seat




Electron-doped cuprates
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Discovered by
Tokura, Takagi and Uchida in 1989

Ln, Ce,CuO, Ln=Pr, Nd, Sm

Periodic Table of the Elements




Armitage et al, RMP 82 (2010)
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Sachdev, Morr, A.C....
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Recent (2023-25) ARPES experiments
by Z-X Shen group on

Two types of experiments

Energy distribution curve (EDC)
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(ARPES intensity at a fixed momentum as a function of frequency)

Momentum distribution curve (MDC)

(ARPES intensity at a fixed frequency as a function of momentum)

EDC and MDC are supposed to measure the same fermionic spectral function.
Yet, measurements found qualitative difference between the two probes



A general expectation for a system displaying a pseudogap
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Peak in EDC, a near-featureless
spectrum in MDC




Should there be a signature that the system is still in a disordered state?

Arlw)

EDC

MDC can measure additional
features at the smallest energies

Orange and blue lines:
two features of the same
spectral intensity




Spectral intensity
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EDC A peak at a finite o.
A clear signature
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And there is more:

The largest reduction of the EDC Superconducting gap is the
spectral weight at small » is at a hot spot largest at a hot spot
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Our theory:

Let's check whether these results can be understood
by treating pseudogap as precursor to antiferromagnetism

(pseudogap due to AFM fluctuations)



That AFM fluctuations give rise to pseudogap behavior is not obvious

Spin fluctuations in a metal are traditionally analyzed within Eliashberg formalism
Argument: spin fluctuations are Landau overdamped and for this reason are slower than fermions.

Eliashberg analysis: scattering by slow spin fluctuations increases fermionic damping and
leads to non-FL behavior at finite frequencies. Non-FL behavior down to ®=0 at a magnetic QCP

There is no pseudogap -- the EDC spectral function A, (o) at k= k. remains peaked at ®=0

o As magnetic &
nereases This is all true about quantum spin fluctuations.

alle

A-A%Kkp, w)

Thermal spin fluctuations have no dynamics,
R fast fermion/slow boson argument does not work
(Eliashberg theory is not applicable)




Thermal spin fluctuations

Perturbative one-loop self-energy

. 3gT d*q 1 1
Z‘th(k?w) — . —1\2 2, — 5 5
(vpE1) (27)*w — € —qLq] T af +1
] * —
108§(&f“6k+Q-+-x/1-+ @u——ek+Q) )
: V14 (w )’ 2\/1 +

Ek+Q

Ek+Q

*
€ — €k — M,

Vilk and Tremblay, 1997
Q)= 3a7/(r (e (D)



This simple, one-loop formula leads to two results:

* Pseudogap behaviorin EDC

* No pseudogap behavior in MDC



EDC at a hot spot

A (w) = Tk 1
ST T2 N A+ W (1= A)2 — 7207, /8)

The prefactor for ®®> monotonically decreases with increasing 2, and changes sign at A, =0.47
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MDC are zero frequency
(a cut through a hot spot)
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More detailed comparison with the data
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Higher-order contributions to Y (k, w)

(a) (

b)
S = SERy,
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The contributions from the two two-loop terms almost cancel out
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As the consequence, pseudogap behavior in EDC survives in two-loops



And what if we neglected vertex corrections? Only
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Full result with only self-energy corrections included (self-consistent one-loop)
No pseudogap

Vertex corrections are crucial for
the pseudogap from spin fluctuations
(no pseudogap in Eliashberg theory)



Finite T, 2D

Theoretical game: consider the extreme case () =dqa-Q Q=(n,n)
No long-range order
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One loop X(k,w) atthe hot spot
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Spin vs charge fluctuations
The best case scenario: x(¢9) =déq-Q) Q=(n,n)

Spin case
Full consideration (self-energy + vertex corrections)
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Superconductivity:

Spectral weight (a.u.)
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How relevant is this reduction for superconductivity?

« Thermal spin fluctuations scatter elastically (zero frequency transfer)
and in this regard act as impurities

For spin-singlet SC, they (almost) act as non-magnetic impurities

and (almost) cancel out In the gap equation.
Millis, Sachdev, Varma, 1988

* As the consequence, the reduction of the spectral weight
in the normal state (almost) does not affect the gap structure

« The gap structure is then determined by quantum fluctuations and
at weak/moderate coupling is the largest at the hot spots

Finkelstein, Abanov, Norman, AC .....

Berg, Fernandes, Shattner, Wang



Conclusions

The “thermal precursor to antiferromagnetism” scenario
works rather well for electron-doped cuprates.

Consistent with recent ARPES data

The story for hole-doped cuprates is much more complicated
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MDC: monotonic behavior of the spectral function i
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| will discuss two Issues

Interpretation of recent ARPES experiments on el-doped (2023-2025)

Z-X Shen’s group (Stanford)

| will argue that they are consistent with the SDW precursor scenario

* Theory: is it guaranteed that a Fermi system near the onset of a
conventional order (SDW/CDW) displays a pseudogap behavior?

Vertex corrections must be kept to obtain pseudogap behavior

But this may not be enough
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And there is more:
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Thermal precursor to AFM vs FL* /spin liquid scenario
FI*/spin liquid: FS reconstruction (expect PG in EDC and MDC)
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