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Landau’s Fermi liquid theory
(Landau, 1957)
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A theory of the Fermi liquid is constructed, based on the representation of the perturbation

theory as a functional of the distribution function. The effective mass of the excitation is
found, along with the compressibility and the magnetic susceptibility of the Fermi liquid.

Expressions are obtained for the momentum and energy flow.

Chief paradigm of interacting electrons at low temperature



Landau derived his theory starting from a conjecture

As a basis for the construction of the type of
spectrum under consideration 1is the assumption
that, as we gradually “turn on” the interaction

between the atoms, i1.e., in the transition from
the gas to the liquid, classification of the
levels remains invariant.

This simple assumption fully characterises the low
energy, long wavelength physical properties of
Interacting electron systems.



A few points are worth noting

* The adiabatic conjecture holds separately in each symmetry subspace.
States with different guantum numbers can well cross.

e Therefore, if the ground state resides in the subspace with /N, electrons, Landau’s
adiabatic conjecture is not in contradiction with a charge-gap opening between

the ground state and the lowest energy states with N, + 1 and N, — 1 electrons.

Ey(Ng+ 1)+ Ey(Ny—1) —2E, (N,y) >0

No -1 No+1
No -1 No No+1 No

adiabatic switching



What then constitutes a sensible definition of a
Landau-Fermi liquid?

A system of interacting electrons whose low-frequency, low-
temperature and long-wavelength response functions can be
obtained by an auxiliary interacting Hamiltonian, the
quasiparticle Hamiltonian, treated within the Hartree-Fock
plus random-phase approximation.



Microscopic justification of Landau’s Fermi liquid theory
Nozieres and Luttinger, 1962
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T'he formal relationships necessary to derive the Landau theory of Fermi liquids are given. These include
relationships between scattering functions for small energy and momentum transfers, vertex functions, and
correlation functions. In addition certain identities (of the Ward type in quantum electrodynamics) are
established which enable us to evaluate these quantities. Finally, the form of all these relationships when a
long-ranged Coulomb force is present is given,




Key assumption of the microscopic derivation

- Dyson’s equation relating retarded Green’s function and self-energy

1

Gle k) = e — e(k) — X(e, k)

- order by order In perturbation theory

Im > (e, k) > —v(k) € v(k) > 0

e—0

- one assumes that such perturbative result holds true for the whole perturbative
series, i.e., that the perturbation series converges uniformly in ¢ = 0



A byproduct of that assumption

- single-particle spectrum for ¢ ~ 0 and K ~ Kk,

Ale. k) = — = Im G(e. k)  Z(kr) 6(c — viep - (k — k)

quasiparticle residue

where kF defines the physical Fermi surface, i.e., the location in the Brillouin zone
of the poles of G(0,K) or, equivalently, the solution of the equation

E(kF) + Z(O, kF) =



what that means, e.g., in ARPES
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Landau-Fermi liquid behaviour

The absence of a quasiparticle peak in the single-particle spectrum,
for example measured by ARPES, is therefore typically interpreted
as a breakdown of Landau’s Fermi liquid theory.



However, there exist strongly correlated materials that,
despite lacking quasiparticle peaks in the spectrum,
exhibit properties typical of conventional Fermi liquids,
up to extreme cases of some correlated insulators.
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1T-TaS: is supposed to be a spin-liquid insulator, and yet has ¢, ~ 1 and
K ~ T, with finite, though small, slope



Do these materials realise a state of matter distinct
from Fermi liquids, or Is the class of Landau’s Fermi
liguids broader than commonly believed?



A hint in that direction

e quasiparticles are well defined if, for ¢ — 0 and k ~ K, their decay rate

Im>(e, k) 5
OReX (e, k) -
Oe€

(e, k) = —Z(e, k) ImX(e, k) =

which holds true If

1. either Z(0,K) is finite and ImX(e, K) ~ — €2, as assumed by Noziéres and
Luttinger

2.0r, Z(e,K) ~ €?and ImZ(0,k) < 0, in which case quasiparticles are still well
defined but they are invisible in the physical electron spectrum



Let us therefore reexamine the microscopic
derivation of Nozieres and Luttinger



More convenient to switch to thermal Green’s functions

1
ie —e(k) — X(2¢, k)

G(ie, k) = G(—ie, k)" =

¢ = (2n + 1) n T are Matsubara frequencies
- since 2(i¢, K) = 2(—ie, K)™

<0 e€e>0

Re Y (ie, k) = Re Y (—1¢e, k Im ¥ (ie, k) = —Im Y (—1¢, k
e Y(i€, k) (—1€, k) m X (€, k) (6){>O o0

which allows defining the quasiparticle residue

Z(e,k) = Z(—€,k) = (1 Im (e, k) )1 c 10,1

€




A novel exact representation of the thermal Green’s function

* It readily follows that

Z (e, k)
1€ — €, (€, k)

G(ie, k) = = Z(e, k) G, (i€, k)

where G.(ie, K) looks like the Green’s function of fictitious non-interacting
quasiparticles with momentum-space dispersion

ex(€, k) = €,(—e, k) = Z(e, k) (e(k) + Re X(ze, k))

which is real and depends parametrically on € such that, for ¢ —- = o0, it becomes
the Hartree-Fock energy



Quasiparticle Fermi surface
1
1€ — €4 (€, k)

» the quasiparticle Fermi surface corresponds to the location in momentum space of
the poles of G.(0,K. 1), i.e., of the roots of €:(0,K )

G, (1€, k) =

0= €. (O, k*F) — Z(O, k*F) (G(k*F) -+ Re Z(O, k*F))

-~ I

=0 equivalent to the physical Luttinger surface, i.e., =0 equivalent to the physical Fermi surface, I.e.,
the zeros of G(0,K) the poles of G(0,k)

In this representation the quasiparticle Fermi surface includes
the physical Fermi surface as well as the Luttinger surface



Ferml'lqu|d theory wavefunction

renormalisation

- straight generalisation of Nozieres and Luttinger derivation Q’

VZ

\ﬁ

quasiparticle interaction ohysical interaction [

vertex vertex the corresponding any physical density or
quasiparticle vertex current fully-interacting
vertex

» having absorbed the quasiparticle residue into the interaction and density/current
vertices, the Bethe-Salpeter equations can be rewritten solely in terms of the

quasiparticle Green’s function G« (ie, K) and of the quasiparticle vertices



Nozieres and Luttinger performed an exact, non-perturbative manipulation of the

Bethe-Salpeter equations for the dynamic (@w-limit) or static (g-limit) response

functions that allows rewriting them in terms of the corresponding quasiparticle

four-leg vertices, I'Y and I/, and of the density/current vertices directly obtainable

from the Ward-Takahashi identities.

The kernel of the resulting equations is simply

A(ie, k) = lim (G*(z’e +iw, k) G (ie, k) — G (i€, k) G*(ie,k))

w—0



naively, it should vanish for @ — 0

/—/\f—\

A(ie, k) = lim (G*(z’eJriw,k) G. (ie, k) — G.(ie, k) G*(z’e,k))

w—0



in reality, it does not since in the interval —w < € < 0 the function is singular

/*/\f_\

A(ie, k) = lim (G*(z’eJriw,k) G. (ie, k) — G.(ie, k) G*(z’e,k))

w—0

- specifically, if €x(€, K) = €.(—¢€, K) is analytic at ¢ = 0, so that, for small €,

ex(€,k) = €,(0,k) + O(€”) ~ €,(0,k) := e, (k)

N

the actual energies of quasiparticles

/\ Fermi distribution
56() af (6* (k)) function

1 5’6* (k) ~— ~ 5(6*(1{))

one readily finds that

A(ie, k) =



- for instance, after Nozieres and Luttinger manipulations, the dynamic limit of the
current-current response function simply reads

v the static term y/ cancels

exactly the diamagnetic one
because of gauge invariance

< @ B @&

where the static current vertex J(ie, K) is determined by the Ward-Takahashi identity

X1 =Xt

Ji(ie,k) = Ve, (€, k) + (ie — €x(e,k)) Vi In Z(e, k)



» the derivation thus relies on the assumption that €.(€, K) is an analytic function
at ¢ = 0, which holds under the condition that

2.(ie, K) is analytic in a finite interval around the origin, not including ¢ = O

and it is less stringent than Nozieres and Luttinger assumption about the
validity of perturbation theory, which instead requires that

2.(ie, K) is analytic in a finite interval around the origin, including € = 0

The crucial difference is that 2(ie, K) is allowed to have a pole at

¢ = () without invalidating Landau’s Fermi-liquid theory



Even more, the derivation of Landau’s Fermi liquid theory based
on the more general analyticity assumption does not require the
system to be metallic

- assuming that a Luttinger surface exists, the derivation works
equally well if, for ¢ — 0,

A(k)?
Z(ie’k) — E’(k) _|_< ()k) 2 & ( ) Luttinger surface
1€ 17y €~ s1gn( € B) = 0
describing a pseudo gapped metal corm
-A(k)- pockets

(i




or, instead,

> (1€, k) ~

Luttinger surface

describing a hard-gap insulator Ek,) =0




Let us therefore assume a hypothetical single-band
Mott insulator that does not break any symmetry and
possesses a Luttinger surface.

Are the quasiparticles hosted by this surface
compatible with the insulating character?



Fermi-liquid expressions of thermodynamic susceptibilities and
transport coefficients

- charge compressibility Kk = p. (1 — ATT — AN)

quasiparticle DOS

pr = é D 0(ex(k))

. charge Drude weight D = e* D, (1 + FTlT + FTll)
. spin susceptibility y = s p. (1 — A + A, )

- spin Drude weight D, = g D (1 T FTIT - FTll)

. specific heat ¢, = 7* p.. T/3

quasiparticle Drude weight

- heat Drude weight D = 7 D.. T/3 I

Ax I k
F oI




Fermi-liquid expressions of thermodynamic susceptibilities and
transport coefficients

- charge compressibility Kk = p. (1 — ATT — AN)

. charge Drude weight D = e* D, (1 + FTIT + FTll)

v Mott’s localisation implies that ATT ~ () and FTlT ~ () by Pauli principle

v If there are well-defined quasiparticles then p.. #= 0 and D.. # 0

v Since the system is nonetheless an insulator, thus x and 1D must vanish, the only
possibility is that A, | = | and FTll = — 1



Fermi-liquid expressions of thermodynamic susceptibilities and
transport coefficients

- charge compressibility € = p. (1 — ATT — AN) = 0

2 1 1 Ay = Fpy =0
- charge Drude weight D = ¢~ D (1 + Iy + FN) = () Ay =-F} =1
. spin susceptibility y = piz p- (1 — A + Ay ) = 2 pg pe
- spin Drude weight Dy = piz D (1 + F!, — F{|) = 2 ug D
) Wilson ratio

- specific heat ¢, = 77 p. 1/3 .

T X

Rw = ~ 2

- heat Drude weight D,. = 7> D.. T/3 W 3up ey

Perfectly consistent with the insulating character




Do we know a concrete realisation of this physical scenario?

» The half-filled single-band Hubbard model in one dimension is a non-symmetry-
breaking Mott insulator. It does possess a Luttinger surface at k. = *+ /2 that

in fact hosts quasiparticles, the spinons, giving rise to ¢y, ~ 1, Pauli-like

magnetic susceptibility and Wilson ratio Ry, ~

* In higher dimensions, it is very likely that the quasiparticles at the Luttinger
surface become unstable at some temperature ... However, they could still be

observed if 1 were much smaller than the quasiparticle degeneracy

temperature 1.



Can quasiparticles at the Luttinger surface exhibit quantum
oscillations?

... once again, Luttinger comes to our aid
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- Luttinger showed that the leading contribution in B/ey and T/¢ to the
oscillatory part of the free energy arises from

AF . =T Z Tr(ln G(z’en, K(r)))

- where the operator G(ie, K(r)) is obtained from the Green’s function at

B = 0, G(ie, K), under the semiclassical substitution

0
k- K@) = —ifi— +—BAr
ar 2c



AF...="T Z Tr(ln G(ien,K(r))) = — T Z Tr(lnG(ien,K(r))—l)

poles and zeros of the operator G(ie, K(r)) equally contribute
to the quantum oscillations, apart from an overall 7-shift



Conclusions

* The class of Landau’s Fermi liquids is broader than commonly
believed.

¢ [t may include states with hidden quasiparticles that are invisible
In the physical single-particle spectrum, do not contribute to
charge transport, and yet exhibit Fermi-liquid-like thermal and
magnetic properties, including quantum oscillations in a
magnetic field.






