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At what moment do we need Fermi formula. 
if fermionic variables are integrated out? 

For example, in the case of the NL!M used for the 
description of disordered fermionic systems active 

degrees of freedom are bosonic. 
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The Quantum Phase Transition (QPT), and the MIT in 
particular, are characterized by non-conventional behavior of 
matter in a broad region of the phase diagram which, 
paradoxically enough, is controlled by a single point at T=0, the 
quantum critical point, where radical changes occur in response 
a small variation of an external parameter. 

  

Quantum Phase Transition (physics of soft modes)



The quantum critical regime
There are two distinct regimes: 

Low temperature: 

Classical regime: 
Sign changes!

We recover the result obtained by Galitski, Larkin (2001)]

Example of a QPT 



Anderson localization: 
importance of large scales

  
Quantum Critical Point

(not a jump):

!"

s

!"#!"
!

M-I Transition at zero temperature in 3d
(σ  denotes conductivity, n – electron density)
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T→ 0 limit
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no M - I Transition
(naïve quantum tunneling picture) 

Nature of the
M-I transition



Rosenbaum et al. 
 Phys. Rev. B, 1983

Si:P
stress tuning

Quantum Critical Point:
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T→ 0 limit
MIT in a 3D system as a full-fledged QPT



AF 1983-84 (Finkel’stein’s “model”); 
 G.Schwiete & A. F. 2014 re-derivation of all previous results in Keldysh technique; 

Generalization of NL! M for heat transport G. Schwiete & A.F. 2016
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parameter z describes renormalization of the DOS of the diffusion modes; 
z can be joined with ν

NL"M with e-e interaction is a unified scheme which includes 
disorder and e-e interactions; 

charge, spin, and valleys
Two steps:  1) to perform the RG flow procedure, then  

2) to link the RG-parameters with the physical quantities

The main advantage of the NL! M is that the functional itself fixes the 
structure of the theory, for example, for scaling description of the MIT. 



How should one understand the NL"M with e-e interactions ? 
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“Quasi-classical” approximation when only slow space and time motions are 
kept  → 

A non-abelian bosonization (fermionic degrees are integrated out) scheme 
which correctly incorporates all symmetries and conservation laws:

particle number, spin conservation, and also energy conservation.  
(this imposes important relationships between parameters of the NL"M)

Minimal functional which can be considered as semi-phenomenological - semi-
microscopical starting point for description of disordered interacting electron 

systems



Why the NL!F is so robust?
Why does it preserve its form in the process of the RG, despite that

in the process of the RG-procedure all channels are mixed ?
Because it is a minimal functional, rather than model! 
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Minimal functional which incorporates all conservations laws and all 

symmetries of a disordered interacting electron system

On the level of the Gaussian fluctuations S[Q] reproduces (trivially !) the 
disordered Fermi liquid



q

particle-hole propagator
(diffuson) diffusive

pole

particle-particle propagator
(cooperon)
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low energy physics is described by two-particle propagators
                   (rather than single-particle Green’s functions); 
          they describe fluctuations of charge, spin and valley densities 
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semiconductors: spin + valleys
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Disorder-averaged 
two-particle propagators
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multiple re-scattering of pairs of quasiparticles 
(each time two into two) leads to diffusion 
(plane waves are not eigenstates anymore : 

dynamic amplitude of 
scattering in the 
particle-hole channel;
only           harmonic 
survives disorder

!! !!!! !!

Static amplitudes remain unchanged in the leading order
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quadratic expansion of the non-linear s–functional 
(Gaussian fluctuations) corresponds to the 

Fermi-liquid theory in the presence of disorder 



r - dimensionless resistance of a d-dimensional 
cubic sample, which stands constant during 
the RG at the fixed point corresponding to 
M-I transition 

Besides resistance-interaction system of the 
RG-equations there is

For free electrons z=1 and not renormalized.
In the presence of e-e interactions, z flows even at the fixed 
point! Equation for z stands separately from the rest; 
temperature and external frequency enter as cutoffs.

z can be joined with ν



At the M-I transition, resistance ρ doesn’t depend on scale:  fixed



MIT 3-5



MIT 3-7

H.-L. Lee, … Gruner 
1998, 2000, NbSi



Newson & 
Pepper (1986) 
T1/3

In the lowest 
order of the ε- 
expansion, in 
the presence of 
magnetic field, z-
index is              ...
zero, i.e. 1/3



Why paradigmatic example: 
Relation between momentum-frequency dimensions was 
determined not by heuristic arguments but by an equation 
which was calculated, and which gave different critical 
exponents for different universality classes of symmetry. 

There is no other way to get conductivity’s exponent 
different from 1/3 other than via z. 

The result was obtained immediately after the 
derivation the NLsM, AF (1983)

Z Z Z Z Z



For a QPT, a frequency integration must be performed 
with participation of the soft modes, i.e., 

propagation functions of the dynamic critical fluctuations 

A. J. Millis, Effect of a nonzero temperature on quantum critical points in itinerant
fermion systems, 1993.

Ornstein-Zernike (dynamic) 

can this frequency-term be renormalized at a QPT? 



z had met a strong opposition in Soviet Union in eighties. 
The argument was that since z can be excluded by 

redefinition of all quantities, it is unphysical.

however, 



Castellani Di Castro 1986: 

and later two-loop calculation by Baranov, Pruisken, Skoric’ 1999

How to observe  Z  directly? 

Measurements of the heat capacitance (specific heat) near the MIT are 
very limited due to the small number of electrons

What about heat transport? 



            What are the consequences of replacing the electric field by 
                               a temperature gradient ?

How to generalize the RG-approach to thermal 
transport?

Heat transport in disordered electron systems
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The scaling theory used to determine transport coefficients included the calculations of 
correlation functions found by introducing source fields into the NLσM, 

and using the Einstein relations.
How to account for a temperature gradient? How to introduce the source

Our approach: extend the NlσM with source fields; 
study renormalizations of the fields;

calculate correlation functions; extract transport coefficients 
(Luttinger‘s "gravitational potential“). 

Heat transport in disordered electron systems
 

G. Schwiete and AF 2014-2016



Action:

Gravitational potential 
acts on all terms in k !

As a result, many potentials arise.

Luttinger (1964)

Heat transport in disordered electron systems; 
Source fields for the heat density-density correlation function



”crazy” term:

Change of variables:

After this transformation, the derivation of the NLσM is straightforward:

the price: 
now, nonlinear in η!

Heat transport in disordered electron systems; 
Source fields for the heat density-density correlation function



NlσM with “gravitational potentials”



Initial conditions:

Technical (very unpleasant) details:

             although initially there was only one gravitational potential,

in the course of the RG procedure, a separate coefficient was generated for each term 
in the action S.  Fortunately, the ultimate result appears to be very simple. 
All the coefficients merge back to the original value:

Fortunately, fixed point for the gravitational 
potentials!!! 
This holds only for the correct initially conditions! 
Otherwise, deep problems !  



Diffusion with re-scattering in the singlet and triplet channels:

Specific heat:

Reproduces the result of Castellani and Di Castro (1986) within the Keldysh scheme

Calculation of the specific heat  (do we need the Fermi’s formula?) I

Bω =cot(ω/2T)-bosonic function



Static limit

Thermal conductivity using the continuity equation

Conservation law

The correlation functions – "microscopical phenomenology”: general form of 
the correlation functions of conserving quantities in the diffusive limit.     
Connection of the static limit of the correlation functions with thermodynamic

Diffusion coefficients are different 
for charge, spin and heat! 



Calculation of the static part of the <heat density - heat density> 
correlation functions (another way to determine specific heat) II

We have checked that the static limit reproduces thermodynamics correctly. 
Now, we can extract the heat conductivity from dynamic  χ                         WFL?
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The Wiedemann-Franz law (WFL)

G. Wiedemann

Nowadays: the WFL is used as a criterion for 
non-Fermi Liquid systems 

1853 ! 



32

Energy scales

WFL holds
-disordered Fermi liquid

-disordered electron liquid 
(long-range Coulomb interaction)

RG regime

Georg Schwiete & AF, with Keldysh NLσM
PRB 89 (2014); PRB 90 (2014)(R); PRB 90 (2014); PRB 93 (2016);

Semi-review:
Georg Schwiete and AF in JETP 2016, vol  122, p 567

An issue in honor of L.V. Keldysh

Thermal transport and the Wiedemann Franz “Law”
       Within the “crude” RG (without sub-thermal energies) the WFL holds 

up to here WFL holds despite strong renormalizations;

we must now enter the sub-thermal interval 



Full scheme versus “crude” RG: includes the sub-thermal energies interval;

                 Sub-thermal shell is controlled by the u-matrices. 
                          
                            At last, the Fermi’s formula is explicitly here!



For short-range interactions no additional (log) corrections

For long-range Coulomb interactions additional logarithmic corrections
arise from processes with sub-T frequency transfers. 

+ + +...

All contributions are proportional to Im(V
R

):  

Example:

Additional logarithms arise from the long-range Coulomb 
interaction in the sub-thermal interval. The WFL is violated

(screening of the Coulomb              
interaction contains dynamics)

ν - is the frequency transferred by the dynamic Coulomb interaction



For dynamically screened long-range Coulomb interactions additional 
logarithmic corrections arise from processes with sub-T frequency 

transfers. 

(screening contains dynamics)

- is the frequency transferred by the dynamic Coulomb interactionν
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Consistent with the conservation of 
energy

Additional logarithmic correction  (not related to c!):

Additional logarithmic correction to κ:

W-F Law is violated!

From the interval:

Additional logarithmic corrections to the heat conductivity 
                             arise from the dynamic Coulomb interaction only
                                     (screening contains dynamics)

κs  -  inverse of the 
screening radius
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Energy scales

WFL
-disordered Fermi liquid

-disordered electron liquid
despite strong renormalizations

WFL

RG regime

sub-T interval -disordered Fermi liquid

-disordered electron liquid

WFL

Additional logarithmic corrections!

Georg Schwiete & AF, with Keldysh NLσM
PRB 89 (2014); PRB 90 (2014)(R); PRB 90 (2014); PRB 93 (2016);

Semi-review:
Georg Schwiete and AF in JETP 2016, vol  122, p 567

An issue in honor of L.V. Keldysh

Results: violation of the Wiedemann Franz “Law” by the Coulomb interaction
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Thus, NLσM at the RG yields the Fermi-liquid description with scale-dependent parameters. 
However, according to  the WFL-criterion it exhibits a non-FL feature owing to long-ranged Coulomb 
interaction



Data from the region C* in a high-
mobility samples (Pudalov’s and 
Klapwijk’s) 
• the drop of five times in r(T) and its 
slowing down has been captured in 
the correct temperature interval
• no adjustable parameters are used

A. Punnoose and AF, PRL (2002)

Resistance-Interaction phase diagram 
extracted from the analysis of the 
resistance and magneto-resistance 
(insert: two-loop calculation, 
A. Punnoose and AF  (2005))

How can we be sure that all this indeed work for disordered electrons ?
                                      Comparison with experiment: 2d electron liquid in MOSFETs

S. ANISSIMOVA, S. V. KRAVCHENKO, A. PUNNOOSE,  A. F AND T. M. KLAPWIJK. nature physics VOL 3, p 707, 2007



Why does my old argument based on time-dependent gauge (1987) does not 
hold in the case of heat transport?
The argument concerned the cancellation of the well-known logarithm-squared 
corrections in all quantities except the single-particle density of states, which itself is 
not a gauge-invariant quantity. (It can be measured only in tunneling experiments, 
giving rise to the zero-bias anomaly; BAA/AA, 1979.)

The argument: 
1) integrate the Coulomb interaction over momenta over the sub-thermal 
interval: 

2) Obtain the effective e-e interaction that depends effectively only on the 
transferred frequency, but not on momentum. 
3) Such an interaction can be eliminated by the time-dependent gauge 
transformation. Consequently, it drops out of all quantities that are 
invariant with respect to the time/frequency-dependent gauge transformation. 

This is not the case for the heat conductivity, because the heat-density 
correlation function contains frequency in the external vertices!



Perspectives of NLσM, or this is all?
Odd-Frequency superconducting pairing (OFP), the same 
as spin-triplet pairing; Vadim Berezinskii (1974)
VB (1935-1980)

Vladimir Zyuzin and AF, 2022 and still in progress



Perspectives or this is all?
Search of Odd-Frequency superconducting pairing (OFP)

Vladimir Zyuzin and AF, still in progress
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The master of “martial arts”: 
Keldysh, heat transport and all that 


