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At what moment do we need Fermi formula.
if fermionic variables are integrated out?

For example, in the case of the NLoM used for the

description of disordered fermionic systems active
degrees of freedom are bosonic.
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Content of the talk

MIT in disordered electron liquids
Non-linear sigma model, NLoM; in fact, not a model but a minimal functional
Connection with the disordered Fermi-liquid theory

Role of the parameter z in the description of the dynamical properties;
relation between w-T scaling and z

Heat capacitance and heat conductivity
Generalization of NLoM for studying heat transport: gravitational potentials
Heat density - heat density correlation function

F, = tanh (%)

Sub-thermal corrections in the case of the Coulomb interaction

Why does my old argument based on the gauge invariance doesn’t work in the case of the
heat transport?

Perspectives of the theory



Quantum Phase Transition (physics of soft modes)
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The Quantum Phase Transition (QPT), and the MIT in
particular, are characterized by non-conventional behavior of
matter in a broad region of the phase diagram which,
paradoxically enough, 1s controlled by a single point at T=0, the
quantum critical point, where radical changes occur in response
a small variation of an external parameter.



“Fluctuation Conductivity in Disordered Superconducting Films”
KT,6S, and AF PRB 85, 174527 2012

Example of a QPT
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We recover the result obtained by Galitski, Larkin (2001)]
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Anderson localization:
importance of large scales

gloc >> ltr

no M - I Transition

Quantum Critical Point
(not a jump):
éloc —> P

(naive quantum tunneling picture)



MIT in a 3D system as a full-fledged QPT
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NLoM with e-e interaction is a unified scheme which includes
disorder and e-e interactions;
charge, spin, and valleys
Two steps: 1) to perform the RG flow procedure, then
2) to link the RG-parameters with the physical quantities

AF 1983-84 (Finkel steins “model”),
G.Schwiete & A. F. 2014 re-derivation of all previous results in Keldysh technique;
Generalization of NLo M for heat transport G. Schwiete & A.F. 2016

TV ~ \2 n A A oA
S[O0] = TJTr [D(VQ) —4-Tr(£0)+O +T, + FC)Q} d’r
o'’ Trg=0 Q' =I
he main advantage of the NLo M is that the functional itself fixes the
structure of the theory, for example, for scaling description of the MIT.

parameter z describes renormalization of the DOS of the diffusion modes;
z can be joined with v



How should one understand the NLoM with e-e interactions ?

S[Q] = ”T" f Tr [D(%Q)2 ~4:Tr(80)+O(T, +T, +f0)Q} d’r

rO=0 QO*=1

“Quasi-classical” approximation when only slow space and time motions are
kept —
A non-abelian bosonization (fermionic degrees are integrated out) scheme
which correctly incorporates all symmetries and conservation laws:

particle number, spin conservation, and also energy conservation.
(this imposes important relationships between parameters of the NLaM)

Minimal functional which can be considered as semi-phenomenological - semi-
microscopical starting point for description of disordered interacting electron
systems



Why the NLoF is so robust?
Why does it preserve its form in the process of the RG, despite that
in the process of the RG-procedure all channels are mixed ?
Because it is a minimal functional, rather than model!

S[0] = ”T‘/ J1r [D(?Q)2 ~4-Tr(80)+0(, +T, +1A“C)Q} d’r
rO=0 O*=1

Minimal functional which incorporates all conservations laws and all
symmetries of a disordered interacting electron system

On the level of the Gaussian fluctuations S[Q] reproduces (trivially !) the
disordered Fermi liquid



low energy physics is described by two-particle propagators
(rather than single-particle Green’s functions);
they describe fluctuations of charge, spin and valley densities

Disorder-averaged
two-particle propagators
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particle-hole propagator

(diffuson) diffusive
pole
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particle-particle propagator
(cooperon)



quadratic expansion of the non-linear c—functional
(Gaussian fluctuations) corresponds to the
Fermi-liquid theory in the presence of disorder
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multiple re-scattering of pairs of quasiparticles
(each time two into two) leads to diffusion
(plane waves are not eigenstates anymore :

Q Q
) ooz
-V k clea W+ ZD k disorder

Static amplitudes remain unchanged in the leading order 1/¢.7, <<1

dynamic amplitude of
scattering in the
particle-hole channel; o T T -
only /=0 harmonic = |04 | { i @ Jpf | ¥
survives disorder =L L =L




Z can be joined with v

Besides resistance-interaction system of the
RG-equations there is y

dln z | ’
one more RG-equation: ~ d¢ — s(p, I's/2)

p - dimensionless resistance of a d-dimensional
cubic sample, which stands constant during
the RG at the fixed point corresponding to
M-I transition

For free electrons z=1 and not renormalized.

In the presence of e-e interactions, z flows even at the fixed
point! Equation for z stands separately from the rest;
temperature and external frequency enter as cutoffs.



dln z
one more RG-equation: a¢ C(p ) FG/ ~ )

rd(K) e 2
= " 3.1
2m2H /e “ k)

Here, p is equal to the resistance r4 of a d-dimensional cube of side length
~ 27 [k measured in units of 2m2A/e? [N.23]; & is the momentum cutoff which
decreases during the renormalization [N.24].

At the M-I transition, resistance p doesn’t depend on scale: fixed
Then, as it follows from Eq. (3.1), in the vicinity of the transition,
o(K)/e? o K322, (3.8)

In the 3d case, for example, on the metallic side of the transition the critical
behavior develops when k > o(T = 0)/e?. At non-zero temperature, in the
critical regime of the MIT the process of renormalization ceases at a scale
when

D(k)&%/2(k) ~ T = k% /v ~ 2T. (3.9)

using Eq. (2.11)

For the electric conductivity measured at external frequency w > T, the
renormalization is cut off by w rather than 7". The above relations are a



Thus, in order to find the temperature or frequency behavior of o at the
MIT, one has to connect the momentum and energy scales in the critical
region, kK ~ (2 max[w,T])l/ 4 However, z itself is a scaling parameter, see
Eq. (3.6). Therefore, one needs to know the critical behavior of the parame-
ter z at the transition, which is determined by the value of pj3, at the critical
point:

o(w, L)~ (2 max[w,T])d_o ~ (max|w, T]) FH ) (3.10)

/ C - pﬁz critical point - (311)

For free electrons z is not renormalized, and at zero temperature o(w) ~
wl/3 for d = 3.25 The e-e interaction modifies this critical behavior of the
conductivity through the critical exponent Z . If w £ T, the renormalization
procedure is cut off by the temperature

(Tl it 7227 (L (3.12)

The scaling behavior described above suggests that the interplay between
frequency and temperature can be described by a single function

@ll o) o b (Bt T'), (3.13)
MIT 3-5
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FIG. 3. Log-log plot of scaled conductivity data versus
scaled frequency with the factor C = 475 (Q mK'/2)"!. The
uncertainty varies inversely with 7'/2, ranging from 20% at
2.6 K to 6% at 25 K. When temperature 1s 16 K and below.
the data for the entire frequency range collapse into one
curve within the experimental noise. Higher temperature data

MIT 3-7
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There is no other way to get conductivity’s exponent
different from 1/3 other than via z.

The result was obtained immediately after the
derivation the NLoM, AF (1983)

72227 1.

Why paradigmatic example:

Relation between momentum-frequency dimensions was
determined not by heuristic arguments but by an equation
which was calculated, and which gave different critical
exponents for different universality classes of symmetry.



For a QPT, a frequency integration must be performed
with participation of the soft modes, 1.¢.,
propagation functions of the dynamic critical fluctuations

x(q, ) = X()f?/(l + (q — Q)2§2 T ’Qm‘/wsf)

Ornstein-Zernike (dynamic) |

[

J. A. Hertz, “Quantum critical phenomena,” Phys. Rev. B, vol. 14, p. 1164, 1976.

T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism. Belflin: Springer, 1985.

A. J. Millis, Effect of a nonzero temperature on quantum critical pints in itinerant
fermion systems, 1993.

can this frequency-term be renormalized at a QPT?



Conclusion: The metal-insulator transition in a system of diffusing
electrons is an example of a quantum phase transition3? with a temperature-
frequency scaling controlled by the parameter z. Precisely the same
parameter describes the scaling behavior of both the conductivity and the
thermodynamics in the critical region of the transition. The structure of the
theory 1s very general and not related to the e-expansion which can be used
for the calculation of Z .

z had met a strong opposition in Soviet Union in eighties.
The argument was that since z can be excluded by
redefinition of all quantities, it is unphysical.

however,



Castellani Di Castro 1986: (C — ZCFL

and later two-loop calculation by Baranov, Pruisken, Skoric’ 1999

How to observe Z directly?

Measurements of the heat capacitance (specific heat) near the MIT are
very limited due to the small number of electrons

What about heat transport?



Heat transport in disordered electron systems

How to generalize the RG-approach to thermal
transport?

What are the consequences of replacing the electric field by
a temperature gradient ?



Heat transport in disordered electron systems

The scaling theory used to determine transport coefficients included the calculations of
correlation functions found by introducing source fields into the NLoM,
and using the Einstein relations.
How to account for a temperature gradient? How to introduce the source

source @ FEinstewn

NloeM — (nn) i o

Our approach: extend the NloM with source fields;
study renormalizations of the fields;
calculate correlation functions; extract transport coefficients

(Luttinger‘s "gravitational potential®).
|

NIO'M souée 777 <l€k> E?jnﬂ;ein p

laYe)
ZJ

G. Schwiete and AF 2014-2016




Heat transport in disordered electron systems;
Source fields for the heat density-density correlation function

i)

Action: S[w*,w] — / (w*zaﬂb — k’[w*aw])

r.t

2= [ D) e k= ho H{fun)- un

— | S[*, 9] = / (i) — (1 + )K", ])

r.t

l Luttinger (1964)

2
0°Z Gravitational potential

(

in k!
2 577r1t1 577r2t2 acts on all terms 1n.k .
As a result, many potentials arise.

Xkk =




Heat transport in disordered electron systems;
Source fields for the heat density-density correlation function

S[y*, ] = / (i) — (1 + )K", ])

r.t

“crazy” term: Odis = _/ (1 + U)w*udzslﬁ
r,t

I

1 1
Change of variables: w 7 m¢ W — W m

After this transformation, the derivation of the NLLoM is straightforward:

S(Q] ~ / dr tr [D(VQ)2 + 2i2{é, )\}Q] + QNI+ 1)@

1 s
A = ~ 1_77+772+”. the price:

1 + n now, nonlinear in n!




NloM with “gravitational potentials”

S[Q] ~ / dr tr [D(VQ) + 2i2{¢, \}Q] + QA(T1 + T2)Q

7

A~ 1-n+n° / /

I

.
\-
s

_




Technical (very unpleasant) details:

although initially there was only one gravitational potential,

S = /tr[D(l +(p)(VQ)® +2iz{6, 1+ ¢.}QI + Y Q1 +(r,)Ts@

1=1,2

in the course of the RG procedure, a separate coefficient was generated for each term
in the action S. Fortunately, the ultimate result appears to be very simple.
All the coefficients merge back to the original value:

A(p = AC, = A¢r, = A¢r, =0

Fortunately, fixed point for the gravitational
potentials!!!
This holds only for the correct initially conditions! Initial conditions:

Otherwise, deep problems ! (p=20 Cz — CF1 — CFQ = —1




Calculation of the specific heat (do we need the Fermi’s formula?) I

&
F. = tanh ()
an T

S[Q] ~ | / dr tr [D(VQ)* — 22{&, \}Q] + Q\(T1 + T'2)Q

1 02 1 — . -

W — 55 =3 / B.,Dq*(21D1D; + 320D2Dy — 42DD)w
Ui n=0 q.w
Diffusion with re-scattering in the singlet and triplet channels:
1 1 =z —2I' r
Dy = . D = . s 1T
’ Dq? — iz sw Dq? — izw 29 =2+1T
Specific heat: B, =cot(w/2T)-bosonic function

. 1 — — —
0C = aTkg:O = 5/ 6Tliu Dq2(z1D1D1 + SDQDQ — 4ZDD)LU = ZCFJ,
q.w

Reproduces the result of Castellani and Di Castro (1986) within the Keldysh scheme




The correlation functions — "microscopical phenomenology”: general form of
the correlation functions of conserving quantities in the diffusive limit.

Connection of the static limit of the correlation functions with thermodynamic

Dyq”
kk — —cl’ :
i Diq? — iw
B _8n D,.q*
SR = oy D,q? —iw
Static limit Conservation law
Yik(q = 0,w =0) = —cT Yik(q=0,w — 0) =0
Xnn(q—>0,w=0)=—@ xnn(qz(),w—>0)=0
op

Thermal conductivity using the continuity equation

k= cDy ! im tim [ 2 1myo(t, )]
Kk = ——1lm lim | =Imyk(k, w)| .
T w—0k—0 L k2 o
_ o0n
o=¢€ @ n Diffusion coefficients are different

for charge, spin and heat!



Calculation of the static part of the <heat density - heat density>
correlation functions (another way to determine specific heat) I

C = ZCFJ,

We have checked that the static limit reproduces thermodynamics correctly.

Now, we can extract the heat conductivity from dynamic L > WFL?



The Wiedemann-Franz law (WFL)

1853 ANNALEN WNo. 8.

‘DER PHYSIK UND CHEMIE.
BAND LXXXIX.

L. Ueber die VVirme- Leitungsfahigkeit der Metalle;
con G. Wiedemann und R. Fran:z.

G. Wiedemann

1853 |

Nowadays: the WFL is used as a criterion for
non-Fermi Liquid systems



Thermal transport and the Wiedemann Franz “Law”
Within the “crude” RG (without sub-thermal energies) the WFL holds

S[Q] ~ / dr u[D(VQ)* +2i2{¢,\}Q] + Y QATNQ
Energy scales )\ A ]__77 _|_ 772

E F Georg Schwiete & AF, with Keldysh NLeM
PRB 89 (2014); PRB 90 (2014)(R); PRB 90 (2014); PRB 93 (2016);

° Semi-review:
Georg Schwiete and AF in JETP 2016, vol 122, p 567

An issue in honor of L.V. Keldysh

R

. -disordered Fermi liquid
° RG regime WFL holds

-disordered electron liquid
T (long-range Coulomb interaction)

up to here WFL holds despite strong renormalizations;

we must now enter the sub-thermal interval



Full scheme versus “crude” RG: includes the sub-thermal energies interval;
Sub-thermal shell is controlled by the z-matrices.

At last, the Fermi’s formula is explicitly here!

The matrix Q can be parametrized as O = U65U, where
UU = 1; the deviations §Q = O — 63 describe diffusive
degrees with energies <1/7. For 8§ Q(¢¢’) = u,8 Q.o u, the
temperature of electrons enters through the distribution func-
tion encoded 1n #:

i, = ((1) i) . F. =tanh (%) . 9)



For short-range interactions no additional (log) corrections

For long-range Coulomb interactions additional logarithmic corrections
arise from processes with sub-T frequency transfers.

Additional logarithms arise from the long-range Coulomb
interaction in the sub-thermal interval. The WFL is violated

=~

R
All contributions are proportional to Im(V ):

V -is the frequency transferred by the dynamic Coulomb interaction

Example: OXkk X / evO: Fe (-7:s+v + Fa—v)ReD2(ka
k,e,v

(screening of the Coulomb
interaction contains dynamics)




For dynamically screened long-range Coulomb interactions additional
logarithmic corrections arise from processes with sub-T frequency
transfers.

the inequality [V|/(Dx,) < k < y/|v|/D, where K, = 4me?v,
is the inverse screening radius. In this interval, we can
approximate the dynamically screened interaction as

3 1 v
[oy(k,V) = . (43)
- 21 + EP)? DKk>
(screening contains dynamics)
Eventually, the bare 1/DK? singularity gives rise to log-

arithmic corrections. It is now clear that the contribu-
tions from the sub-temperature interval are important
in the case of the dynamically screened Coulomb

interaction, for which fé ;(K, v) is singular. For a
short-range interaction, the discussed interval of fre-
quencies does not exhibit any singularity and, there-
fore, is not important.

V - is the frequency transferred by the dynamic Coulomb interaction



Additional logarithmic corrections to the heat conductivity

arise from the dynamic Coulomb interaction only

(screening contains dynamics)

D q2
Xkk = —c1 Dkq];—
Dy = . (Dn—|—5D ) \

Additional logarithmic correction to x:

S —

T
12

DKQ
T

From the interval:

T? 9
D—/<;2<Dk <T

Consistent with the conservation of
energy

W-F Law is violated!

Ks _ inverse of the

screening radius

36



Results: violation of the Wiedemann Franz “Law” by the Coulomb interaction

S[Q] ~ [ drtr[D(VQ)? + 2iz{&, \}Q] + >  QAL\Q

Energy scales

A l—n+ 7

Sy Georg Schwiete & AF, with Keldysh NLeM
. PRB 89 (2014); PRB 90 (2014)(R); PRB 90 (2014); PRB 93 (2016);

Semi-review:
Georg Schwiete and AF in JETP 2016, vol 122, p 567

°
1 An issue in honor of L.V. Keldysh
T . ye s
. -disordered Fermi liquid
° RG regime WFL . o
. -disordered electron liquid
T despite strong renormalizations
°
WFL

-disordered Fermi liquid

sub-T interval

T? . ‘y"‘/ -disordered electron liquid

_Dli Additional logarithmic corrections!
S




Thus, NLoM at the RG yields the Fermi-liquid description with scale-dependent parameters.

However, according to the WFL-criterion it exhibits a non-FL feature owing to long-ranged Coulomb
interaction
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How can we be sure that all this indeed work for disordered electrons ?
Comparison with experiment: 2d electron liquid in MOSFETSs

1.0
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T

0.8

p/ p max
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p(mh/e?)

0.4+

-2 -1.5 -1 -05 0 %% - == o o
pmﬂx ll’l(T/rr ) P M1

max

0.2

Data from the region C" in a high-
—~ mobility samples (Pudalov’s and
0.01 | AT Klapwijk’s)
Ceo e the drop of five times in p(T) and its
Resistance-Interaction phase diagram slowing down has been captured in

extracted from the analysis of the the correct temperature mterval

resistance and magneto-resistance .
(insert: two-loop calculation, e no adjustable parameters are used

A. Punnoose and AF (2005)) A. Punnoose and AF, PRL (2002)

S. ANISSIMOVA, S. V. KRAVCHENKO, A. PUNNOOSE, A. FAND T. M. KLAPWIJK. nature physics VOL 3, p 707, 2007



Why does my old argument based on time-dependent gauge (1987) does not
hold in the case of heat transport?

The argument concerned the cancellation of the well-known logarithm-squared
corrections in all quantities except the single-particle density of states, which itself is
not a gauge-invariant quantity. (It can be measured only in tunneling experiments,
giving rise to the zero-bias anomaly; BAA/AA, 1979.)

The argument:
1) integrate the Coulomb interaction over momenta over the sub-thermal

interval: - 1 :
Féd(ka V) = P2 lvz
20+ Fy)” Dk

2) Obtain the effective e-e interaction that depends effectively only on the
transferred frequency, but not on momentum.

3) Such an interaction can be eliminated by the time-dependent gauge
transformation. Consequently, it drops out of all quantities that are
invariant with respect to the time/frequency-dependent gauge transformation.

This is not the case for the heat conductivity, because the heat-density
correlation function contains frequency in the external vertices!



Perspectives of NLoM, or this is all?

Odd-Frequency superconducting pairing (OFP), the same
as spin-triplet pairing; Vadim Berezinskii (1974)

VB (1935-1980)

iSo = —— /Tr[D(VQ) + 4iZEQ)]

,7T21/

iStriplet = ’TTI‘F Vtriplet(ela 62) Trxsn [ T Oap Qele ﬁa(r)—‘
r

X TI'KSN [’72/17_:{: Oun Qezeé MU (r)] 561 —€],e5—€2

4

In the singlet Cooper channel stand matrices og. A hybrid consisting of
(i) singlet Cooper channel (it contains Gor'kov-Nambu 7-matrices, but
only o) and (ii) spin-density channel (it contains o-matrices, but no
T-matrices) has a chance to generate Siiplet = FLUCTUATIONS !

Vladimir Zyuzin and AF, 2022 and still in progress



Perspectives or this is all?
Search of Odd-Frequency superconducting pairing (OFP)

Vodd(T €1, TE)

1.5¢

4 -0.5 0.5 1 T€2
-1.5}

_3-_“//""/

"BCS-like” Interaction in the odd-frequency spin-triplet Cooper channel
(attractive). V. Zyuzin&AF PRB 105, 214523 (2022)

Vladimir Zyuzin and AF, still in progress
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Georg Schwiete the University of Alabama

The master of “martial arts™:
Keldysh, heat transport and all that



