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The Fermi Liquid in a nutshell (1/4) ’'g |

The ideal Fermi gas:
E. Fermi, Rend. Fis. Acc. Lincei 3, 145 (1926)

At T=0 all single particle levels are filled up to the Fermi energy
Excited states are only non interacting particle-hole pairs

Thermal average leads to the smooth change of the
Fermi distribution




The Fermi Liquid in a nutshell (2/4)

The Fermi liquid:
L. D. Landau, Sov. Phys. JETP. 3 (6): 920-925 (1957).

The interaction is adiabatically switched on: N particles map into N
QuasiParticles with effective mass m*, QP residuum z,...

The behavior of quasiparticles is very similar to the free fermion gas
At T=0 all single QP levels are filled up to the Fermi energy

Excited states are:

* interacting particle-hole pairs

« Zero-sound collective mode for neutral He3

or plasmon for charged electrons

At T>0 thermal average leads to the
smooth change of the
Fermi distribution for the QP




The Fermi Liquid in a nutshell (3/4)

The Fermi liquid for electrons:

The interaction between QP entails a finite lifetime, but this is long
due to Pauli principle: exclusion limits the phase space for QP decay

1/t~ImX(g,T) ~ £2+T?

Low energy excitations providing low-T specific heat:

* QP contribution: Cerrmi ~m* T like in Sommerfeld theory

QP behave nearly like free fermions: this is why metals are metals

Putting aside various issues
(momentum dissipation, momentum
dependence of scattering mech.,...)
T? resistivity is expected

p(T)~1/t ~1/t~ T?




The Fermi Liquid in a nutshell (4/4)
The Fermi liquid can also become unstable and form ordered states

Near the instabilities many different
collective excitations can populate the ®-q
plane:

Vi

Circulating Currents




The FL is very robust and general paradigm for metallic behavior

$

In 1987 the anomalous metallic behavior of cuprates came as a big surprise

S . .
; \\No saturation at high T

linear resistivity p~T

Linearity continues down to
very low T when SC is
destroyed by H

And a lot more anomalies... All nicely summarized by Varma’s
phenomenological Marginal Fermi Liquid Theory. HOW and WHY?




The Landau theory of Fermi liquids is a robust and general
paradigm for metallic behavior...

To account for disruption of FL in 2D/3D one needs singular effective interactions
(cf. RG calculations, Gallavotti Benfatto, Shankar..., Metzner, Castellani, Di Castro): HOW and WHY?

¥

A very important and debated issue in cuprates

The Criticality paradigm:
Strong correlations weaken the metal and other
phases may form (AF, CDW, CC, nematic,...).

T | A new phase emanates AFE-QCP near the Mott
from the strongly i TTesretiien Ql{afntum
elated Mott Pines, Sachdey, s, Critical

. . dyn\a‘nqical flucts. mediatd’
on region Chubukov,...(~1990) i ——
Stripes i) ~“Quant
Emery, Kivelson (1993) [
Ancient Romans (1993)

MIT, magnetism, low D, ..

Anderson, Laughlin, Lee, Wen, Nagaosa, Sachdey, ...
RVB, Luttinger Liquid, anyons, gauge fields, FL*, ... C.M. Varma (1994),

Ancient Romans (1995)




Linearity continues down
to very low T when SC is
destroyed by H

)

C,/T (m K? mol™)
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Where are strange metals found? Where the typical p~T is found?

Taupin & Paschen, Crystals 2022

n c

1.01.214161.82.0
BaFe,(AS,,P,); i

And the list is longer...

st i L SM always around QCP’s but
B R L ey not necessarily exactly on top:
i e o b e L SM can occur over more or less

extended parameter regions

CDW-QCP Ayres et al, Nature 2021

See also Hartnoll & Mackenzie, RMP 2022



Quantum Critical Points are the ideal source of singular interactions:
Quantum fluctuations are abundant and dynamical: ideal for low-energy singular scattering.

Huge variety of systems, and involved mechanisms: @

AFM, FM, CDW, nematic, Pomeranchuk, circulating currents...
Qar, Qepws Q~0,... variety of momenta...
Narrow or broad NFL regions at low T ...

Still p~T essentially everywhere...

HOW CAN WE EXTRACT A GENERAL MECHANISM DESPITE THIS VARIETY? Q




Sufficient MINIMAL set of conditions to obtain SM (p~T):

1) If p~T down to low T, low characteristic energy (0,<T) scattering fluctuations
b(w)=1/(e®T-1)~T/w: the scatterers are nearly classical fluctuations even at low T
(no H/T scaling, scattering not necessarily Planckian, pls ask...)

2) Nearly isotropic scattering: strong scattering at all momenta (Umklapp included)

if scattering is strong at some q_only it doesn’t work
[Hlubina, Rice, PRB 51, 9253 (1995), see also A. Rosch PRL 1999]

In Hot Spots 1/t~T large scattering
In cold regions 1/t~T? small (Fermi-liquid) scattering
Cold regions short-circuit the hot ones and

p(T)~T? Fermi liquid behavior
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In UD cuprates at low T<Tqc
narrow-in-q CDW coexist with
broad-in-q CDF

In OD or/and high T only CDF
are present

Dynamical charge density fluctuations
pervading the phase diagram of a
Cu-based high-T superconductor

RArpam , S. Caprara®*, R. Fumagalli’, GDVcch , Y. Y. Peng't, E. Andersson”,
, M. , L. L5,

D. Betto®, GMDLuca 7, N. B. Bros kesF
CDCasro *, M. Grilli**, G. Ghiringhelli*

Science 365, 906-910 (2019)
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CDF are a ubiquitous scattering mechanism

in cuprates
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Arpaia, R, et al., Nat. Commun.2023, 14, 7198

Similar things (but different interpretation)
In EELS experiments by Abbamonte’s group
arXiv:2411.11164




Strange metal behaviour from charge density
fluctuations in cuprates  communicaTions PHYSICS | (2021)4:7

Gotz Seibold!™ Riccardo Arpaia® 23, Ying Ying Peng® 28, Roberto Fumagalli?, Lucio Braicovich® 24,
Carlo Di Castro®, Marco Grilli® >®°* Giacomo Claudio Ghiringhelli® 27 & Sergio Caprara® 6%
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CDW scattering doesn’t work
(Hlubina-Rice)
CDW produce

NBCO UDSO deviations from p~T
® Hscan T=60K . (and pOSSibly SC)

I fit (total)
[ |----fit (BP)
I — fit (NP)

CDF implement p~T

CDF scattering does work (bUt not SC)
It is nearly ISOTROPIC




IN THE SM REGION ONLY CDF (PINK) FLUCTUATIONS ARE PRESENT

CDF dynamical corr. fcn. can have a simple gaussian textbook functional form

D(q, w) = (M-l— vlq—q.* — 0’ /Q — iyw)_l M = Df_z

@y~ M is the characteristic energy of the
But rather small correlation length £-pp~1-2 A (local in space broad peak in q)

The CDF parameters (q., M, v, Q,...) can be
obtained from HR and LR RIXS spectra, (and EELS...)

O full spectrum
elastic peak

—— CDF
background

—— phonon
overtone
total fit

Arpaia et al, Science 2019, Arpaia & Ghiringhelli, JPSJ 2021
Seibold et al, Commun. Phys. 2021

Arpaia et al., Nat. Commun. 2023, 14, 7198.
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The strategy is: (same for Bi2212, YBCO, LSCO)

full spectrum
elastic peak
CDF
background
phonon
overtone
total fit

1) Identify from RIXS the scattering mediators

©
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intensityla. u. ]

O experiment
—— theory

2) Calculate and fit resistivity [

00=0.37,A=0.111

PN

expt 100K

expt 200K

expt 295K
—— theory 100K
—— theory 200K
— theory 295K

3) Calculate and fit the optical scattering time
(and other quantities: magnetoresistance,
Raman, ARPES, Seebeck, thermal conductivity, ...)

1/t(w)[meV]

o expt 100K

o expt 200K

O expt 300K 0p=10.0,A=2.2
—— theory 100K
—— theory 200K
— theory 300K

1/t(w)/kT

4) Check /T scaling (hallmark of MFL phenomenology)




15t take-home message:

At T>T. the strange metal is not so strange: It may just be a FL with
QP scattering with thermally excited nearly local low-energy
excitations.

In cuprates these can well be fully characterized CDF fluctuations.

So, what’s the problem?




But Mpe~10 meV ~100 K: how can we have linear p~T with ,~M<T down to
a few Kelvin?
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Legros et al, Nat. Phys. 2019




Damping is the answer

v describes the Landau damping: the mode
decays in p-h pairs in time 1=yt

When y grows, the characteristic energy
®,= M/y of the CDF decreases

My, Mly; MYy,

M/y,

:I.



2"d take-home message:

The dissipation parameter y can rule the decrease of ®,=M/y for finite &
M=vE— stays finite: no critical slowing down due to § —o0

500

Since & stays small the momentum distribution | & *veco oo
stays broad = isotropic scattering

N
e
L 2RN

coexists with small energy ®,=M/y ! . A

¢ i
® FWHM = 0.15r.l.u.
q.=0.27 r.lu.

Dissipation-driven strange metal behavior .
Sergio Caprara, Carlo Di Castro, Giovanni Mirarchi, Gotz Seibold & MG ‘ il
Commun. Phys. 2022

Let’s assume that y increases by decreasing T, e.g. , then the FL scale M/y shrinks

GENERAL CONSEQUENCE: At T=0 the system is still FL, but the (T,®) range of FL shrinks by
decreasing T (increasing y) = SHRINKING FERMI LIQUID (SFL)




Let’s benchmark SFL with MFL
MFL SFL

due to momentum indep. (local) due to momentum indep. (local)
mediator CDF, phonons, paramagnons, p-h pairs...

o full spectrum
elastic peak
CDF
background

intensityla.u.]

MFL (dashed) vs SFL (solid)
|[ImZ (w, T)|~g+ w? + T2 RS Im3(w,T)~g (VM/Y)F + w2 +T7 - M/y)

Standard MFL o/T scaling form

SFL has an almost scaling

form when M/y(T)->0
FL for o<M/y

T=50K

MFL has divergent QP mass
mgp*~log(1/T) 7 MY Mmqp* =m/Z is finite
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O @O RSO
A S
The interaction is (almost) momentum independent = vertex corrections negligible

in current-current response
=2 (®,T) (almost) fully determines the optical conductivity c(®,T)

o expt 100K

« At ©>M/y, o(®,T) quite similar to the MFL case o s @TmoAis
(see Michon et al, Nat Commun. 2023)
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SFL has quasi-scaling form if M/y is small...

mE (o, Dl~g (/7 + 0 +T2 - M/y) ey ==

Mirarchi et al. Condens.Matter2024,9,14.

20{ = theory 300K

1/t(w)/KT

Optical conductivity expts seem to agree well with MFL
and with SFL as well...




SO FAR WE LOOKED AT POSSIBLE CONSEQUENCES OF

ASSUMING y(T)~log(T,/T)

ARE THERE INDICATIONS THAT v INDEED DOES GROW LARGE?




Log(1/T) divergence of C,/T down to low temperature

", Nd-1sco

20p 7 7
@7

H
(4]
C,/T [10°%v/K?

Data from Nd-LSCO, Eu-LSCO
Michon et al, Nature 2019

doping p-p*

specific heat both from electrons and collective CDF
C¥~mqgp*~3-5 m, finite electron contribution

CVbOS/T singular bosonic contribution

See also, Shang-Shun Zhang , Erez Berg, and
Andrey V. Chubukov, PRB 2023




o o T, NeSCO Log(1/T) divergence of C,/T down to low temperature
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The same y~log(1/T)
accounts for T-linear
resistivity down to low T

with the same slope
Caprara et al. Commun. Phys. 2022
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Data from Nd-LSCO, Eu-LSCO
Michon et al, Nature 2019

T[K] ) doping p-p*

specific heat both from electrons and collective CDF
C¥~mgp*~3=5m, finite electron contribution

CVbOS/T singular bosonic contribution

See also, Shang-Shun Zhang , Erez Berg, and
Andrey V. Chubukov, PRB 2023




INTRINSIC MECHANIMS:
CDF interact and tend to form a self-generated
glass:

Old story:
J. Schmalian, P. Wolynes et al.... Stripe glasses 2000...

V. Dobrosavljevic, E. Miranda 2005,...Cluster Glass

Overcooled liquid of CDF

Many open issues: interplay between dynamical slowing
down and (quantum) glass formation, stability of
configurational entropy,...

s %o
WORK IN PROGRESS

‘ L':aier, MG, J Kurchan
‘ . s ~(1/T)

Very preliminary

EXTRINSIC MECHANISM:

CDF decay in diffusive p-h modes

In 2D the damping y has a log renormalization

by =7 — 0 = Alogmax [(rT) ™, 1],

The y grows ~log (1/T)

[MG, C. Di Castro, G. Mirarchi, G. Seibold,
S. Caprara Symmetry 15, 569 (2023)]




Ancient Romans
CDF local non-critical flucts. near but away from QCP (& small, finite M)
Low energy with an increasing damping (slow relaxation)
M/ vy —0). Disorder: not important (just a bit?)
Scaling? NO, but almost (matter of fact)

Glassy phase (AR) and Stripe
Glass (Schmalian, Wolynes,...)
Cluster Glass (Dobrosaljevic,...) Local low energy

Griffith’s phase (MMS, Vojta) bosons mediate

Boson localiz. (Sachdev scattering

Sachdev & Co. Varma
Yukawa-SYK model(s) Circulating currents — Dissipative XY-model

Critical flucts at QCP become local due to Topo excitations with z=co QCP
disordered e-bos coupling. effectively local flucts. due to factorized
Low energy because M —0, & diverges D(®,9)=x(a)Dpe(®). ...

Near QCP also because o ', Low energy because M, —0, & diverge
MFL like Dyp (@)




Collaborators: THEORY
The Ancient Romans
(Sapienza):

S. Caprara,

C. Di Castro, 3 -

framework

G. Mirarchi (->Wuerzburg)

RIXS EXPERIMENTS: Politecnico di Mlano

S. Bhattacharyya

Cottbus (BTU):
G. Seibold

G. Ghiringhelli L. Braicovich

and many others
N. B. Brooks, B. Keimer, M. Le Tacon, M. Salluzzo, ...



CONCLUSIONS

1) In cuprates CDF work well as strong low-energy scatterers
at T>T. = SM from CDF, observed measured modes

Allow small energy and isotropic scattering
if y~log(1/T) the and it accounts for:
p~TatlowT, C,, Seebeck, MFL-like Z(®,T), o(®,T)...

3) Slowing down of short range fluctuations
CDF decay in diffusive particle-hole pairs?
New T=0 glassy phase of CDF over a finite interval of QCP tuning parameter?




CONCLUSIONS

1) In cuprates CDF work well as strong low-energ
at T>T. = SM from CDF, observed meas

2) At low T if the dissipation pz
Allow small energy and

if y~log(1/T) the

p~TatlowT, C

3) Slo fCtuati, &
CDF de N Ble pairs? :

New T=0Y over a finite interval®of QCP tuning parameter?




SLIDES DI APPOGGIO




Effect of charge density fluctuations on thermopower properties
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M When y~log(1/T) then the same behavior

occurs for Seebeck and C,/T
S T G. Mirarchi et al.

2.0 GPa

20 40
T(K)

Gourgout et al., PHYSICAL REVIEW RESEARCH : :
3, 023066 (2021) Also the CDF-drag contribution to

thermopower is proportional to y~log(1/T)

0.0000005
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0.00000001%(-1.43+4.45*2.6610g(170/x)) ——

0.0000004

CDF DRAG CONTRIBUTION TO THE
SEEBECK COEFFICIENT
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G. Mirarchi et al, in preparation
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A S
The interaction is (almost) momentum independent = vertex corrections negligible in current-current response
=2(»,T) (almost) fully determines the optical conductivity o(®,T)

hw < 0.4 eV

e Ato>T, o(w,T) quite similar to the MFL case WK< T <H0K
(see Michon et al, Nat Commun. 2023)

* But notice that o(w,T) scaling in not perfect at low @ when T<100 K /
M/y is small but finite and spoils perfect scaling

—200K —250 K
— 300 K

It seems that m*/m from specific heat C,//T and from optics
\ m*(0)/m are similar and divergent. But in SFL m* is finite!
Specific heat .

e m : Is there a problem for the SFL scenario?
Optics\‘

* A )
m=276m, ©/m "

Michon et al, Nat Commun. 2023




\ 8 It seems that m*/m from specific heat C,,/T and from optics
\ ‘\.\ m*(0)/m are similar and divergent. Butin SFL m* is finite!
Y

\.
Specific heat

mejm ! Actually there is a way out for SFL:
Optics ‘g

o
m=276m, O/ "

Cy/T ~y ~ log(1/T) (from bosonic modes, see next slide)
Michon et al, Nat Commun. 2023 o .

m*(0)/m comes from finite frequency fermionic X(®,T)

which is quite similar to the MFL one at o>M/y =

m*(0)/m diverges also in the SFL case....

the equal slope of m*/m from C/T and o(®,T) has been imposed in the experimental paper by
choosing the total spectral weight (reasonable choice, but not mandatory...)




First trivial/crucial remark: the T-linear resistivity and /T scaling is due to the Bose
statistics at T>m:

b(w)=1/(e*T-1)~T/o® = 1/t ~ T/® ImD(®)

By no means the magnetic field H can play the same role of T: no way to get

1/t ~ (T?+H?), H/T scaling and so on

P. Giraldo-Gallo et al. Science 2018, (LSCO) Ataei et al. Nat. Phys. 2022

Ayres, J. et al. Nature 2021, (TI2201, Bi2201) The scattering rate is the sum of an elastic (7T-independent)

Hayes, I. M. et al., Nat. Phys. 2016 (pnictides) anisotropic term and an . term:
/T (¢9 T) =C‘[ 1/70 +1/ Taniso |COS(2¢)|V]+

1/t ~ max[T,H] ~ (T>+H?), near a critical doping value
“the behaviour of electrons in a magnetic field in these strange
metals is entirely the result of their orbital motion, and there is

d no evidence that the scattering rate has any field dependence.

The H-linear dependence at low T is accounted for by Boltzmann theory, given the strongly
anisotropic elastic scattering rate




Ataei et al. Nat. Phys. 2022
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At low T the elastic scattering dominates

At higher T the dominates and H2 magnetoresistance is recovered

1/t ((0, T) =C[ 1/70 + 1/ Taniso |COS(2¢)|V]+

Nd-LSCO I

TK)= 4

0.4 |

L

—— MR_Giovanni
—— MR_Goetz
MR_Goetz_modified

Low T

20




Mirarchi et al, Condens.Matter 2024,9,14

|IImX (w, T)|~g\/a)2 + T? ~max/w,T]

Standard MFL /T scaling form
1™ MFL has divergent QP mass mqp*~log(1/T)
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Question: Why should y grow large? And why should y~log(1/T)?
EXTRINSIC MECHANISM

A model (for 2D only) [Mmg, c. Di Castro, G. Mirarchi, G. Seibold, S. Caprara Symmetry 15, 569 (2023)]

MN,C: T~w>1/1
At low energy and T the CDF can decay

in a diffusive p-h mode -y T~w <1/t
In 2D the damping y has a log renormalization

0y =7 =70 = Alogmax [(rT) ™, 1],

g* g a -
The y grows ~log (1/T) q-_::( +( +<

Diffusive mode (pole)

Notice:
No strong disorder, CDF CDF g* l g CDF
just few impurities of Z((D)= NNNN@IIWWAONNNN
a Drude metal




The self-energy of CDF due to
Diffusive dens-dens corr fcn | GV =Raglele (SRR NAI (=01 Eg

in D=2

) = OM — |wy|d7.
6y =y — 70 = Alogmax [(tT) 1, 1]
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Still....in some systems around p* the system does become increasingly anisotropic (2D)

— 0T

+ 20T

O 50 TforC T
60 T for A, B 7

o O
1/p_ (@ em™)

C

P. M. Lozano, G. D. Gu, Qiang Li, and J. M. Tranquada

. arXiv: 2307.13740
Y. Ando et al. PRL 1996 Boebinger et al, PRL 1996

Bi,Sr,La,Cu0, La,.Sr,CuO,
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Proximity to a QCP to have abundant order parameter fluctuations. But stay away from it:

A local order parameter fluctuation
embedded in a bath of fermionic quasiparticles

Similarities with
* SYK model
(Sachdev, Patel, Parcollet, Schmalian, Valentinis,...)
e Spin-Boson (Schmalian, Berg,...)
(also C,=T log(1/T) from bosons)
« Kondo-destruction as if y~1/®'~* but E&—oo

COMMON IDEA:
let fermions interact with local d.o.f. at low-energy
(built-in in SYK models, due to Spin-Boson and CDF in the SFL model)




Linear resistivity down to lower
and lower temperatures
M/y<T

[MG, C. Di Castro, G. Mirarchi, G. Seibold,
S. Caprara Symmetry 15, 569 (2023)]

p=0.21 /
0.24 0.24

75 100 125 150
T (K)

Michon et al, Nature 2019




Seibold et al., arXiv:1905.10232

Im X(w) [eV]
Im X(w)/kT

The inhomogeneous mixture of CDW and CDF is
treated:

- summing the two scattering channels (Mathiessens
rule)

- with Effective medium theory EMT

o
o
3

L) [eV]

eV]
j=}

['(T),
=}
S

!

resistivity [LQ cm]

=
T

=4




J =

M2

M + 2N,
TN AR 2k T)?

The dimensionless coupling
Determines m*/m at T=0

m*/m=1+1=1.4

Seibold et al, Commun. Phys. 2021

m*/m can contribute to the specific heath
C,/T, but it cannot explain a large growth if
A is small/moderate

Log(400/T)




ARE STRANGE METALS ALL "'PLANCKIAN’? 1/7=0KizT with o~1

Similarity of Scattering Rates in Are Heavy Fermion Strange Metals Planckian?

Metals Showing T-Linear Resistivity Mathieu Taupin © and Silke Paschen *
J. A. N. Bruin," H. Sakai,* R. S. Perry,? A. P. Mackenzie® Science 2013 CTyStﬂlS 2022, 12, 251. httpS//dOlOI'g/ 103390/Cryst12020251
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Planckian relaxation delusion in metals
M V Sadovskii, 2021 Phys.-Usp. 64 175

Not all strange metals are Planckian?

See also Hartnoll & Mackenzie, RMP 2022




The interaction is (almost) momentum independent = vertex corrections negligible in current-current response
=2(»,T) (almost) fully determines the optical conductivity o(®,T)

hw < 0.4 eV

e Ato>T, o(w,T) quite similar to the MFL case WK< T <H0K
(see Michon et al, Nat Commun. 2023)

* But notice that o(®,T) scaling in not perfect at low ® when T<100 K A==l
M/y is small but finite and spoils perfect scaling

— 300 K

Bi2212 p = 0.19
T=80K
q=(0.26,0) r.l.u.

.
w

Intensity (arb. units)

Energy loss (eV)

Arpaia, R, et al., Nat. Commun. 2023, 14, 7198




The Fermi Liquid in a nutshell (4/4)
The Fermi liquid:

The residual interaction between QP is contained in the interaction function f(k,k’)

From f(k,k’) the Landau parameters F, ) are derived that describe physical quantities
(Fso—> compressibility, F,, = magn. suscept.,...)

This also entails the Pomeranchuk stability conditions of the FL.
E.g. for the symmetric channel case

Near the instabilities many different collective excitations
can populate the o-q plane:

’

Circulating Currents
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