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The ideal Fermi gas:
E. Fermi, Rend. Fis. Acc. Lincei 3, 145 (1926) 

At T=0 all single particle levels are filled up to the Fermi energy
Excited states are only non interacting particle-hole pairs 

Thermal average leads to the smooth change of the 
Fermi distribution

The Fermi Liquid in a nutshell (1/4)
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The Fermi liquid:
L. D. Landau, Sov. Phys. JETP. 3 (6): 920–925 (1957).

The interaction is adiabatically switched on: N particles map into N 
QuasiParticles with effective mass m*, QP residuum z,… 
The behavior of quasiparticles is very similar to the free fermion gas
At T=0 all single QP levels are filled up to the Fermi energy
Excited states are:
• interacting particle-hole pairs 
• Zero-sound collective mode for neutral He3

or plasmon for charged electrons

At T>0 thermal average leads to the 
smooth change of the 
Fermi distribution for the QP 

The Fermi Liquid in a nutshell (2/4)
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Plasmons with charged els

The Fermi liquid for electrons:
The interaction between QP entails a finite lifetime, but this is long 
due to Pauli principle: exclusion limits the phase space for QP decay

The Fermi Liquid in a nutshell (3/4)

1/t~ImS(e,T) ~ e2+T2

Putting aside various issues 
(momentum dissipation, momentum 
dependence of scattering mech.,…)
T2 resistivity is expected

r(T)~1/ttr~1/t~ T2

Low energy excitations providing low-T  specific heat:

• QP contribution:         CVfermi ~ m* T  like in Sommerfeld theory

r(T)

QP behave nearly like free fermions: this is why metals are metals



The Fermi liquid can also become unstable and form ordered states
The Fermi Liquid in a nutshell (4/4)

Near the instabilities many different 
collective excitations can populate the  w-q 
plane:
paramagnons, Charge Density Waves, 
Pomeranchuk flucts,
Circulating Currents

w

q

p-h excit
ations

Landau damping

phonons

Plasmons with charged els
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The FL is very robust and general paradigm for metallic behavior

In 1987 the anomalous metallic behavior of cuprates came as a big surprise 

T

r(T) No saturaQon at high T

Linear-in-T resisti
vity

Linearity continues down to 
very low T when SC is 
destroyed by H

linear resistivity r~T

And a lot more anomalies… All nicely summarized by Varma’s 
phenomenological Marginal Fermi Liquid Theory. HOW and WHY?



The Landau theory of Fermi liquids is a robust and general 
paradigm for metallic behavior…

A very important and debated issue in cuprates

To account for disrupNon of FL in 2D/3D one needs singular effec-ve interac-ons
(cf.  RG calculaQons, GallavoY BenfaZo, Shankar…, Metzner, Castellani, Di Castro): HOW and WHY?

The CriNcality paradigm:
Strong correlaQons weaken the metal and other
phases may form  (AF, CDW, CC, nemaQc,...). 

T

doping

(quasi) 
ordered

Quantum 
Critical

Quantum 
Disordered

QCP
C.M. Varma (1994), 
Ancient Romans (1995)

The MoWness paradigm:
MIT, magneQsm, low D,..

T

doping

A new phase emanates 
from the strongly 
correlated Mott 
Transition region
MIT

Anderson, Laughlin, Lee, Wen, Nagaosa, Sachdev, …
RVB, Luttinger Liquid, anyons, gauge fields, FL*, …
Many exotic beasts…

dynamical flucts. mediate  
singular  scattering

AF-QCP near the Mott 
M-I Transition
Pines, Sachdev, 
Chubukov,…(~1990)
Stripes
Emery, Kivelson (1993)
Ancient Romans (1993)



WHAT IS A `STRANGE METAL’? A metal that violates the FL paradigm

In some `2D cases’ linear resisNvity is accompanied by CV/T~log(1/T)
LETTER RESEARCH

Extended Data Fig. 10 | Comparing with data on non-superconducting 
LSCO. a, Normal-state electronic specific heat Cel of Eu-LSCO (squares; 
from Fig. 2b) and Nd-LSCO (circles; from Fig. 2d), at T = 0.5 K (red), 2 K 
(blue) and 10 K (green), plotted as Cel /T versus p. (At p = 0.08, 0.11 and 
0.16, the red and green squares are split apart slightly so they can both be 
seen.) Open symbols are extrapolated values (dashed lines in Fig. 2b, d).  
Data on Nd-LSCO at p = 0.07, 0.12, 0.27, 0.36 and 0.40 (purple) are γ 
values obtained on polycrystalline samples, as described in Extended Data 
Figs. 7, 8. The black, purple and red data points are taken from Fig. 3b, 
with error bars defined in the legend of Fig. 3b. Error bars on the blue and 
green data points are defined in the same way as for the red data points 
(see legend of Fig. 3b). We also include γ for non-superconducting LSCO 
from published work (diamonds), obtained by extrapolating C/T = γ + βT2  
to T = 0 from data below 10 K (p < 0.06, ref. 32; p = 0.33, ref. 13).  

The vertical dashed line marks the pseudogap critical point p* in  
Nd-LSCO (Extended Data Fig. 1). All solid lines are a guide to the eye.  
b, Comparison of Cel/T versus p in our samples of Eu-LSCO and Nd-LSCO 
at T = 10 K (green squares and circles in a) with published data on non-
superconducting LSCO (diamonds). Open diamonds are γ measured in 
single crystals of LSCO at dopings where there is no superconductivity 
(p = 0.33, ref. 13; p < 0.06, ref. 32; remainder17). Solid diamonds are data 
from powders made non-superconducting by Zn substitution17; γ values 
are obtained from fits to C/T = γ + βT2 between about 4 K and about 8 
K. We see that these early data on LSCO are quantitatively consistent with 
our data on Eu-LSCO and Nd-LSCO, apart from a downward shift in the 
position of the peak, consistent with a lower p* in LSCO (Extended Data 
Fig. 1). Lines are a guide to the eye.

Michon et al, Nature 2019

linear resistivity r~T

T

r(T) No saturation at high T

Linear-in-T resisti
vity

Linearity conQnues down 
to very low T when SC is 
destroyed by H

Same slope!



Where are strange metals found?  Where the typical r~T is found?

SM always around QCP’s but 
not necessarily exactly on top:

SM can occur over more or less 
extended parameter regions

662 | Nature | Vol 595 | 29 July 2021

Article

(refs. 3,24), its persistence is difficult to explain within the usual QCP 
scenarios3. Moreover, as shown in Fig. 1c, recent high-field Hall effect 
studies have revealed an anomalous drop in the Hall number25 from 
1 + p to p (ref. 26) over a similar doping range, and at the same time the 
observed decrease in superfluid density with overdoping is claimed to 
be at odds with BCS theory27. Hence, descriptions of superconducting 
overdoped cuprates as conventional metals seem to fail to capture the 

full experimental picture. Here we reveal that the in-plane MR is also 
highly unconventional.

Magnetoresistance scaling
In a Fermi liquid (Drude) metal, the magnetotransport is determined 
uniquely by the magnetic field strength H, which enters via the 
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Fig. 1 | The strange-metal regime of overdoped cuprates. a, Temperature T 
versus doping p phase diagram showing the superconducting (Tc versus p) 
dome (dotted lines) for the single-layer hole-doped cuprates Tl2Ba2CuO6+δ 
(Tl2201), La/Pb-doped Bi2Sr2CuO6+δ (Bi2201) and La2−xSrxCuO4 (LSCO)12. The 
thick orange dashed line marks (approximately) the temperature onset T* for 
physical manifestations of the opening of the normal-state pseudogap in the 
single-particle excitation spectrum and the temperature at which the 
resistivity deviates from its high-T, T-linear dependence. The faint dashed line 
on the right side of the graph indicates the temperature below which the 
resistivity in LSCO is purely quadratic. The red squares, blue circles and green 
diamonds indicate doping levels at which the in-plane MR is found to vary 
linearly with magnetic field (at high field strengths) in Tl2201, Bi2201 (this 
work) and LSCO12, respectively. b, Coefficient A of the low-T, T-linear resistivity 
in Tl2201 (red squares)24, Bi2201 (blue circles)25 and LSCO (green diamonds)3, 
normalized by the interlayer distance d. Note the different ordinate axes to 
accommodate the (smaller) A values for Tl2201. c, Evolution of the low-T Hall 
number nH(0) across the strange-metal regime in Tl2201 (red squares) and 
Bi2201 (blue circles), as determined from Hall resistivity measurements in high 

magnetic fields25. A crossover from nH(0) ≈ p to nH(0) ≈ 1 + p (black dotted 
lines) is found to occur across a wide doping range beyond p*, the doping level 
at which the pseudogap vanishes. The grey dashed line is a guide to the eye. At 
low doping in LSCO, nH(0) closely follows the number of doped holes26, as 
indicated by the green diamonds. The evolution of nH(0) in LSCO beyond 
p = 0.08 is difficult to obtain from Hall effect measurements owing to the onset 
of charge order and a change in the Fermi surface geometry around p = 0.20, 
when the Fermi level crosses the Van Hove singularity. d, Transverse in-plane 
MR of a heavily overdoped Bi2201 sample (Tc < 1 K) at T = 4.2 K, showing the 
crossover from quadratic MR at low-field to H-linear MR at higher field as 
indicated by dashed lines. The error bars in a, b and c are reproduced from 
published data and reflect uncertainty in doping level, where known, as well as 
geometrical uncertainty in the sample dimensions and the positioning of the 
voltage contacts. Since transport is a one-dimensional probe of 
superconductivity, we ascribe an error margin of p = 0.005 to the doping levels 
of Tl2201 and Bi2201 defined by their Tc values, except for the 0 K Bi2201 
sample, the error margin of which is set at p = 0.01 in a.

CDW-QCP Ayres et al, Nature 2021
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Figure 1. Color-coded phase diagrams featuring strange metal behavior in various materials plat-
forms. (a) YbRh2Si2 (left) and YbRh2(Si0.95Ge0.05)2 (right), from [40]. (b) CeRu2Si2, from [41].
(c) CeRhIn5, from [42]. (d) Ce3Pd20Si6, from [43]. (e) SrRu3O7. Note that the temperature scale is cut
at 4.5 K. At lower temperatures, deviations from linear behavior towards larger powers are observed;
from [44]. (f) La2�xSrxCuO4, from [45]. (g) BaFe2(As1�xPx)2, from [46]. (h) Magic-angle twisted
bi-layer graphene, adapted from [47].

The most pronounced such behavior is found in YbRh2Si2 (Figure 1a, left). Be-
low 65 mK, the system orders antiferromagnetically [48]. As magnetic field (applied
along the crystallographic c axis) continuously suppresses the order to zero at 0.66 T [40],
linear-in-temperature resistivity, with A

0 = 1.8µWcm/K and r00 = 2.43µWcm, extends
from about 15 K [48] down to the lowest reached temperature (below 25 mK) [40]. Re-
cently, this range was further extended down to 5 mK, showing A

0 = 1.17µWcm/K for
a higher-quality single crystal (r00 = 1.23µWcm) [49], thus spanning in total 3.5 orders of
magnitude in temperature. This happens in a background of Fermi liquid behavior away
from the QCP. A linear-in-temperature resistivity is also seen in the substituted material
YbRh2(Si0.95Ge0.05)2. Its residual resistivity is about five times larger than that of the stoi-
chiometric compound. That this sizeably enhanced disorder does not change the power e
indicates that the order-parameter-fluctuation description of an itinerant antiferromagnetic
quantum critical point [36] is not appropriate here. This point will be further discussed in
Section 7.

For CeRu2Si2 (Figure 1b), the situation is somewhat more ambiguous. Linear-in-
temperature resistivity does not cover the entire core region of the fan; both above 2 K and
below 0.5 K, crossovers to other power laws can be seen [41]. In CeRhIn5 (Figure 1c), at the
critical pressure of 2.35 GPa, linear-in-temperature resistivity extends from about 15 K down
to 2.3 K, the maximum critical temperature of a dome of unconventional superconductiv-
ity [42]. That the formation of emergent phases such as unconventional superconductivity
tends to be promoted by quantum critical fluctuations is, of course, of great interest in
its own right even if, pragmatically, it can be seen as hindering the investigation of the
strange metal state. Finally, Ce3Pd20Si6 exhibits two consecutive magnetic field-induced
QCPs, with linear-in-temperature resistivity emerging from both [43]. Other heavy fermion
systems show similar behavior, though color-coded phase diagrams may not have been
produced. A prominent example is CeCoIn5. Its electrical resistivity was first broadly
characterized as being linear-in-temperature below 20 K down to the superconducting
transition temperature of 2.3 K [50]. Both magnetic field [51,52] and pressure [53] suppress
the linear-in-temperature dependence and stabilize Fermi liquid behavior, in agreement
with temperature over magnetic field scaling of the magnetic Grüneisen ratio indicating
that a quantum critical point is situated at zero field [54]. Indeed, small Cd doping stabilizes
an antiferromagnetic state [55].

In Figure 1e–h, we show resistivity-exponent color-coded phase diagrams of other classes
of strongly correlated materials, a ruthenate, a cuprate, an iron pnictide, and a schematic phase
diagram of MATBG. Extended regions of linear-in-temperature resistivity are also observed.
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Instead, a number of heavy fermion compounds exhibit a linear-in-temperature elec-
trical resistivity

r = r00 + A
0
T , (7)

a dependence dubbed “strange metal” behavior from the early days of high-temperature su-
perconductivity on [39]. In Figure 1a–d we show four examples, in the form of temperature–
magnetic field (a,b,d) or temperature–pressure (c) phase diagrams with color codings that
reflect the exponent e of the temperature-dependent inelastic electrical resistivity, Dr µ T

e,
determined locally as e = ∂(ln Dr)/∂(ln T). In all cases, fans of non-Fermi liquid behavior
(e 6= 2) appear to emerge from QCPs, with e close to 1 in the center of the fan and extending
to the lowest accessed temperatures (at least in a,c,d).

Figure 1. Cont.

CDW-QCP

Taupin & Paschen, Crystals 2022

See also Hartnoll & Mackenzie, RMP 2022

And the list is longer…



Quantum Critical Points are the ideal source of singular interactions:
Quantum fluctuations are abundant and dynamical: ideal for low-energy singular scattering.

Huge variety of systems, and involved mechanisms: 😳

AFM, FM, CDW, nematic, Pomeranchuk, circulating currents…
QAF, QCDW, Q~0,… variety of momenta…
Narrow or broad NFL regions at low T …

Still r~T essentially everywhere…

HOW CAN WE EXTRACT A GENERAL MECHANISM DESPITE THIS VARIETY?🤔



WHAT DO WE NEED TO GET A STRANGE METAL?
Sufficient MINIMAL set of conditions to obtain SM (r~T):

1) If r~T down to low T, low characteristic  energy (w0<T) scattering fluctuations
b(w)=1/(ew/T-1)~T/w: the scatterers are nearly classical fluctuations even at low T 
(no H/T scaling, scattering not necessarily Planckian, pls ask…)

2) Nearly isotropic scattering: strong scattering at all momenta (Umklapp included)
if scattering is strong at some qc only it doesn’t work

[Hlubina, Rice, PRB 51, 9253 (1995), see also A. Rosch PRL 1999]

a b c d

p
p*

Figure 3

Sketch of Fermi surface evolution as a function of doping. At p > p
?, the Fermi surface of

hole-doped cuprates is a large cylinder, either hole-like (if p < pFS), as drawn here (d), or
electron-like (if p > pFS). At p < p

?, the topology of the Fermi surface is still unclear. In the AF
phase at low p (Fig. 1), one expects small nodal hole pockets (a), containing a carrier density
n = p, consistent with the Hall number nH ' p in YBCO and LSCO at low p. If the AF phase
extended up to p

?, its Fermi surface just below p
? would be as sketched in (c), with additional

anti-nodal electron pockets (green). In the CDW phase (b), the Fermi surface contains a small
electron pocket, whose k-space location is still not established. In one scenario (32), the electron
pocket is located at the nodes.

and NMR (19) measurements showing that C(H) and the Knight shift do saturate above

25 T at T = 2-3 K. It was also shown that the field Hvs(T ) above which ⇢(H) becomes

non-zero, at the transition from vortex solid to vortex liquid, is such that Hvs(0) = Hc2(0)

as T ! 0, i.e. there is no vortex liquid at T = 0 (17). Therefore, by measuring Hvs(T ) vs T

via the resistivity and extrapolating to T = 0 one can estimate Hc2 (at T = 0). Applying

this procedure to an extensive set of high-field data on YBCO yields the phase diagram of

Hc2 vs p across the full doping range (Fig. 2a). Data from two other cuprates are added to

this plot. First YBa2Cu4O8 (Y124), a stoichiometric underdoped cuprate with Tc = 80 K

and Hc2 = 44 T, determined both directly from (H) and from ⇢(H) via Hvs(T ) (17).

Secondly Tl2Ba2CuO6 (Tl2201), in the strongly overdoped region. Defining p from Tc in

all three materials using the same conversion curve (with Tc
max = 94 K), the Hc2 data are

seen to fall on a single smooth curve of Hc2 vs p (Fig. 2a).

LSCO:
La2�xSrxCuO4

Nd-LSCO:
La1.6�xNd0.4SrxCuO4

Eu-LSCO:
La1.8�xEu0.2SrxCuO4

Hg1201:
HgBa2CuO6+�

The H�p diagram of Fig. 2a is our road map: it tells us how strong a field is required to

remove superconductivity (in those three materials) and it is a fingerprint of the underlying

ground state. With decreasing p from the right, the striking two-peak structure in Hc2(p) is

shaped by the following sequence of phases: it first rises in the strange metal phase (sec. 6),

until its highest point at p?, the onset of the pseudogap phase (sec. 5), below which it drops

down to a local minimum where CDW order is strongest (sec. 4), and rises again as CDW

weakens, to reach a second peak where CDW order gives way to incommensurate SDW

order, then dropping to zero where the phase of commensurate AF order sets in (Fig. 1a).

Given that the maximal field achievable today in pulsed magnets is 100 T, this means

that superconductivity cannot currently be suppressed down to T = 0 in pure YBCO in

the range 0.155 < p < 0.21. As shown earlier by Zn substitution (20), superconductivity is

most robust right around the pseudogap critical point, p? = 0.19. Nevertheless, applying

80 T enables one to study the normal state in that range down to at least 40 K (21).

In LSCO, where Tc
max ' 40 K (vs 94 K in YBCO), Hc2 is roughly 2 times smaller

www.annualreviews.org • The remarkable underlying ground states of cuprate superconductors 5

In Hot Spots 1/t~T large scattering
In cold regions 1/t~T2 small (Fermi-liquid) scattering
Cold regions short-circuit the hot ones and

r(T)~T2  Fermi liquid behavior



Figure 3 summarizes the outcome of the fit-
tings for the samples UD60 and OP90, whereas
fig. S6 reports the corresponding results for the
UD81 sample. The NP presents all the charac-
teristics previously observed in several under-
doped cuprates and commonly attributed to
the incommensurate CDWs. The BP shares with
the NP the position in the reciprocal space (al-
though with small differences; see fig. S7), but it

has a very different, almost constant, temper-
ature dependence. Therefore, we attribute the
BP to very short-range charge modulations
(i.e., to CDFs), as depicted by the reddish region
of the T-p phase diagram of Fig. 4A. Whereas
the full width at half maximum (FWHM) of the
NP follows a critical temperature dependence,
the temperature dependence of the BP width
is much weaker in the accessible temperature
range and within our experimental uncertain-
ties. Finally, although the amplitude of the NP
(i.e., the peak height) is larger than that of the
BP at low temperature, the total “volume” (i.e.,
the integrated scattering intensity) is always
dominated by the BP, at least in the accessi-
ble T range above the critical temperature Tc

(Fig. 3).
To further clarify the double character of the

phenomenon and to assess the possible dynam-
ical character of the CDFs, we studied the energy
associated with the BP by exploiting the high
resolution of our instruments. We measured Cu

L3 RIXS spectra on the OP90 and UD60 samples
at selected temperatures and at the wave vector
of the BP maximum. At all temperatures, the
main peak is slightly broader than the instru-
mental resolution (40 meV) and is not centered
at zero energy loss, with the inelastic component
stronger at higher T (fig. S10) (28). Contributions
to this quasi-elastic peak come from phonons,
from elastic diffuse scattering from the sample
surface, and from charge fluctuations. The pho-
non peak intensity is either T-independent (for
phonons with energies higher than 30 meV) or
decreases upon cooling down (at lower energies);
scattering from the surface is constant with T.
The scattering related to CDWs is the only
component expected to grow in intensity with
decreasing T. Figure 4B shows the quasi-elastic
component of three spectra taken on the opti-
mally doped sample at 90 K, 150 K, and 250 K,
and q|| = (0.31, 0), after subtraction of the pho-
non contribution, as estimated from the (H, H)
scan (see figs. S11 to S13 for details on how the
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Fig. 1. Quasi-elastic scan along the (H, 0)
direction for several YBa2Cu3O7–d and
Nd1+xBa2–xCu3O7–d films with different
oxygen dopings.The quasi-elastic intensity was
determined by integrating the Cu L3 RIXS
spectra measured at different q|| values in the
energy interval [–0.2 eV, +0.15 eV]. The
measurements were performed at different
temperatures on the following samples:
(A) Optimally doped NBCO, p ≈ 0.17.
(B) Underdoped YBCO, p ≈ 0.14. (C) Under-
doped NBCO, p ≈ 0.11. (D) Insulating
NBCO, p < 0.05. The inset in (C) shows the
peak intensity Ipeak versus T–1 for samples
OP90 (circles) and UD60 (squares). The
extrapolation to T → ∞ provides an estimate of
the intrinsic background of the signal (bgr).

Fig. 2. Two distinct
peaks in fits to NBCO
UD60 data. (A) Quasi-
elastic scan measured
along (H, 0) on sample
UD60 at T = 250 K
(red circles). (B) After
subtracting the linear
background, given by the
quasi-elastic scan
measured along the
Brillouin zone diagonal
[open squares in (A)], a
clear peak is still present,
which can be fitted by a
Lorentzian profile (dashed
line). (C) Same as (A), but
at T = 60 K (violet circles).
(D) After subtracting
the linear background
[open squares in (C)], the
data can be fitted with a
sum of two Lorentzian
profiles (solid line): one
broader (dashed line),
similar to thatmeasured at
250 K, and the second
one narrower and more
intense (dotted line).
(E) The 3D sketch shows
the quasi-elastic scans
measured along H (cubes)
and along K (spheres)
at T = 60 K on sample
UD60, together with the
Lorentzian profiles used to
fit them. A narrow peak
(NP, blue surface) emerges
at qNP

c = (0.325, 0) from a
much broader peak (BP,
red surface) centered at
qBP
c = (0.295, 0).
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SUPERCONDUCTIVITY

Dynamical charge density fluctuations
pervading the phase diagram of a
Cu-based high-Tc superconductor
R. Arpaia1,2*, S. Caprara3,4, R. Fumagalli1, G. De Vecchi1, Y. Y. Peng1†, E. Andersson2,
D. Betto5, G. M. De Luca6,7, N. B. Brookes5, F. Lombardi2, M. Salluzzo7, L. Braicovich1,5,
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Charge density modulations have been observed in all families of high–critical temperature
(Tc) superconducting cuprates. Although they are consistently found in the underdoped
region of the phase diagram and at relatively low temperatures, it is still unclear to what
extent they influence the unusual properties of these systems. Using resonant x-ray
scattering, we carefully determined the temperature dependence of charge density
modulations in YBa2Cu3O7–d and Nd1+xBa2–xCu3O7–d for several doping levels. We isolated
short-range dynamical charge density fluctuations in addition to the previously known
quasi-critical charge density waves. They persist up to well above the pseudogap
temperature T*, are characterized by energies of a few milli–electron volts, and pervade a
large area of the phase diagram.

C
uprate high-temperature superconductors
(HTSs) deviate from the Landau Fermi
liquid paradigm as a result of the quasi–two-
dimensionality of their layered structure
and the large electron-electron repulsion.

The doping (p)–temperature (T ) phase diagram
encompasses, at low T, the antiferromagnetic
and the superconducting orders and, at higher T,
the pseudogap region, which is characterized
by a reduction of the quasi-particle density of
states in some sections of the Fermi surface
below the crossover temperature T*. In the
pseudogap state and up to optimal doping p ~
0.17, short- to medium-range incommensurate
charge density wave (CDW) order emerges and
competes weakly with superconductivity. Theo-
retical proposals of CDW (1–3) and of low-
energy charge fluctuations (4) were first put
forward not long after the discovery of HTS;
experimental evidence from surface and bulk
sensitive techniques came initially in selected
materials (5–8) and later in all cuprate families
(9–14). Moreover, long-range tridimensional CDW
(3D CDW) order has been observed inside the
superconducting dome (for p ~ 0.08 to 0.17)
in special circumstances, such as in high mag-
netic fields that weaken superconductivity or in

epitaxially grown samples (15–17). Finally, the
recent observation of charge density modula-
tions in overdoped (Bi,Pb)2.12Sr1.88CuO6+d out-
side the pseudogap regime (18) hints at a wider
than expected occurrence of this phenomenon.
The relevance of charge density modulations

for the unconventional normal state and the
superconducting properties of HTS is currently
being debated. In some theoretical models, long-
and short-range CDW orders are seen as epi-
phenomena on top of a fundamentally peculiar
metallic state, where the endpoint at T = 0 of the
pseudogap boundary line (p* ~ 0.19 to 0.21)
marks the physical onset of a non–Fermi liquid
metallic phase (19–24). In alternative scenarios,
charge density modulations are instead pivotal to
the anomalous properties of cuprates (1, 25–27).
In such scenarios, CDW orders are expected to
be critical [i.e., associatedwith the divergence of
a correlation length at a quantum critical point
(QCP)] and to permeate, through charge density
fluctuations (CDFs), a much broader area of the
phase diagram. In this context, short-range cor-
relations extending up to room temperature have
recently been observed in the electron-doped
cuprateNd2–xCexCuO4 (13). To establish towhat
extent static and fluctuating charge density
modulations contribute to the phase diagram,
we have measured them in YBa2Cu3O7–d and
Nd1+xBa2–xCu3O7–d as a function of doping and
temperature. We have discovered that CDFs are
present over a broad region of the phase dia-
gram, which strengthens the importance of
charge density modulations in determining the
normal-state properties of cuprates; addition-
ally, our findings are consistent with the previ-
ously known short- to medium-range CDW orders
being precursors of the long-range charge modu-
lation detected in the presence of high magnetic
fields, pointing toward CDW orders as a quasi-
critical phenomenon.

We measured resonant inelastic x-ray scat-
tering (RIXS) on five YBa2Cu3O7–d (YBCO) and
Nd1+xBa2–xCu3O7–d (NBCO) thin films spanning
a broad range of oxygen doping, going from the
antiferromagnetic (AF) region, where T* is not
even defined, passing through the underdoped
(UD) and the optimally doped (OP) regime, up
to the slightly overdoped region (i.e., beyond the
pseudogap line) (fig. S1) (28–30). Measurements
were performed at the Cu L3 edge (~930 eV),
over broad in-plane wave vector ranges (q|| = 0.2
to 0.4 reciprocal lattice units, r.l.u.) and temper-
ature ranges (T = 20 to 270 K). Figure 1C shows
the quasi-elastic (near-zero energy loss) com-
ponent of the RIXS spectra as a function of q|| =
(H, 0) taken on sample UD60 (NBCO, p ≈ 0.11)
at different temperatures. A clear peak is pre-
sent in the whole temperature range under in-
vestigation. The intensity of the peak decreases
as the temperature increases, with little temper-
ature dependence above 200 K. A quasi-elastic
peak, robust versus temperature, is also present
in samples UD81 (YBCO, p ≈ 0.14; Fig. 1B) and
OP90 (NBCO, p ≈ 0.17; Fig. 1A). In contrast, the
antiferromagnetic sample (NBCO AF) shows no
peaks above the linear background (Fig. 1D).
These data highlight the existence of a genuine
quasi–T-independent scattering signal repre-
sentative of short-range charge modulations;
although this peak was present in previous-
ly published x-ray scattering data on YBCO,
Bi2Sr2–xLaxCuO6+d, La2–xSrxCuO4, and other
cuprates, it had been considered to be part of the
“high-temperature” background and subtracted
out; consequently, it had not been thoroughly
discussed (10, 12, 31–33). Note that no peak is
present in the (H, H) direction, where a fea-
tureless linear shape is observed that can be
used as a linear background in the fitting of the
scans along (H, 0) (Fig. 2, A to C). The scattering
peak intensity is approximatively linear versus
1/T (Fig. 1C, inset): The extrapolation to very
high temperature (1/T = 0) provides an estimate
of the intrinsic background of the signal, stem-
ming mainly from the scattering from low-
energy phonons and surface imperfections
(fig. S3) (28).
We decomposed the (H, 0) scans by least-

squares fitting to extract the peak intensity,
width, and position. Figure 2 shows the results
for sample UD60. At high temperatures, the
quasi-elastic intensity can be fitted by assuming
a single, broad Lorentzian profile on top of a linear
background (Fig. 2B). At lower temperatures, two
peaks are necessary: a broad peak (BP), very sim-
ilar to that measured at higher temperature,
and a narrow peak (NP) centered at a nearby
value ofH. We also scanned alongKwhile fixing
H =HNP at the maximum of the NP in the (H, 0)
scan; there, the shape consists of a narrow and a
broad peak, both centered at K = 0. Because the
temperature dependence of the K-scans follows
that of the H-scans (fig. S2) (28), the quasi-
elastic peak in the reciprocal space can be mod-
eled by a double 2D Lorentzian, a broad one and
a narrow one, centered respectively at qNP

c =
(0.325, 0) and at qBPc = (0.295, 0) (Fig. 2E).
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Charge density modulations have been observed in all families of high–critical temperature
(Tc) superconducting cuprates. Although they are consistently found in the underdoped
region of the phase diagram and at relatively low temperatures, it is still unclear to what
extent they influence the unusual properties of these systems. Using resonant x-ray
scattering, we carefully determined the temperature dependence of charge density
modulations in YBa2Cu3O7–d and Nd1+xBa2–xCu3O7–d for several doping levels. We isolated
short-range dynamical charge density fluctuations in addition to the previously known
quasi-critical charge density waves. They persist up to well above the pseudogap
temperature T*, are characterized by energies of a few milli–electron volts, and pervade a
large area of the phase diagram.

C
uprate high-temperature superconductors
(HTSs) deviate from the Landau Fermi
liquid paradigm as a result of the quasi–two-
dimensionality of their layered structure
and the large electron-electron repulsion.

The doping (p)–temperature (T ) phase diagram
encompasses, at low T, the antiferromagnetic
and the superconducting orders and, at higher T,
the pseudogap region, which is characterized
by a reduction of the quasi-particle density of
states in some sections of the Fermi surface
below the crossover temperature T*. In the
pseudogap state and up to optimal doping p ~
0.17, short- to medium-range incommensurate
charge density wave (CDW) order emerges and
competes weakly with superconductivity. Theo-
retical proposals of CDW (1–3) and of low-
energy charge fluctuations (4) were first put
forward not long after the discovery of HTS;
experimental evidence from surface and bulk
sensitive techniques came initially in selected
materials (5–8) and later in all cuprate families
(9–14). Moreover, long-range tridimensional CDW
(3D CDW) order has been observed inside the
superconducting dome (for p ~ 0.08 to 0.17)
in special circumstances, such as in high mag-
netic fields that weaken superconductivity or in

epitaxially grown samples (15–17). Finally, the
recent observation of charge density modula-
tions in overdoped (Bi,Pb)2.12Sr1.88CuO6+d out-
side the pseudogap regime (18) hints at a wider
than expected occurrence of this phenomenon.
The relevance of charge density modulations

for the unconventional normal state and the
superconducting properties of HTS is currently
being debated. In some theoretical models, long-
and short-range CDW orders are seen as epi-
phenomena on top of a fundamentally peculiar
metallic state, where the endpoint at T = 0 of the
pseudogap boundary line (p* ~ 0.19 to 0.21)
marks the physical onset of a non–Fermi liquid
metallic phase (19–24). In alternative scenarios,
charge density modulations are instead pivotal to
the anomalous properties of cuprates (1, 25–27).
In such scenarios, CDW orders are expected to
be critical [i.e., associatedwith the divergence of
a correlation length at a quantum critical point
(QCP)] and to permeate, through charge density
fluctuations (CDFs), a much broader area of the
phase diagram. In this context, short-range cor-
relations extending up to room temperature have
recently been observed in the electron-doped
cuprateNd2–xCexCuO4 (13). To establish towhat
extent static and fluctuating charge density
modulations contribute to the phase diagram,
we have measured them in YBa2Cu3O7–d and
Nd1+xBa2–xCu3O7–d as a function of doping and
temperature. We have discovered that CDFs are
present over a broad region of the phase dia-
gram, which strengthens the importance of
charge density modulations in determining the
normal-state properties of cuprates; addition-
ally, our findings are consistent with the previ-
ously known short- to medium-range CDW orders
being precursors of the long-range charge modu-
lation detected in the presence of high magnetic
fields, pointing toward CDW orders as a quasi-
critical phenomenon.

We measured resonant inelastic x-ray scat-
tering (RIXS) on five YBa2Cu3O7–d (YBCO) and
Nd1+xBa2–xCu3O7–d (NBCO) thin films spanning
a broad range of oxygen doping, going from the
antiferromagnetic (AF) region, where T* is not
even defined, passing through the underdoped
(UD) and the optimally doped (OP) regime, up
to the slightly overdoped region (i.e., beyond the
pseudogap line) (fig. S1) (28–30). Measurements
were performed at the Cu L3 edge (~930 eV),
over broad in-plane wave vector ranges (q|| = 0.2
to 0.4 reciprocal lattice units, r.l.u.) and temper-
ature ranges (T = 20 to 270 K). Figure 1C shows
the quasi-elastic (near-zero energy loss) com-
ponent of the RIXS spectra as a function of q|| =
(H, 0) taken on sample UD60 (NBCO, p ≈ 0.11)
at different temperatures. A clear peak is pre-
sent in the whole temperature range under in-
vestigation. The intensity of the peak decreases
as the temperature increases, with little temper-
ature dependence above 200 K. A quasi-elastic
peak, robust versus temperature, is also present
in samples UD81 (YBCO, p ≈ 0.14; Fig. 1B) and
OP90 (NBCO, p ≈ 0.17; Fig. 1A). In contrast, the
antiferromagnetic sample (NBCO AF) shows no
peaks above the linear background (Fig. 1D).
These data highlight the existence of a genuine
quasi–T-independent scattering signal repre-
sentative of short-range charge modulations;
although this peak was present in previous-
ly published x-ray scattering data on YBCO,
Bi2Sr2–xLaxCuO6+d, La2–xSrxCuO4, and other
cuprates, it had been considered to be part of the
“high-temperature” background and subtracted
out; consequently, it had not been thoroughly
discussed (10, 12, 31–33). Note that no peak is
present in the (H, H) direction, where a fea-
tureless linear shape is observed that can be
used as a linear background in the fitting of the
scans along (H, 0) (Fig. 2, A to C). The scattering
peak intensity is approximatively linear versus
1/T (Fig. 1C, inset): The extrapolation to very
high temperature (1/T = 0) provides an estimate
of the intrinsic background of the signal, stem-
ming mainly from the scattering from low-
energy phonons and surface imperfections
(fig. S3) (28).
We decomposed the (H, 0) scans by least-

squares fitting to extract the peak intensity,
width, and position. Figure 2 shows the results
for sample UD60. At high temperatures, the
quasi-elastic intensity can be fitted by assuming
a single, broad Lorentzian profile on top of a linear
background (Fig. 2B). At lower temperatures, two
peaks are necessary: a broad peak (BP), very sim-
ilar to that measured at higher temperature,
and a narrow peak (NP) centered at a nearby
value ofH. We also scanned alongKwhile fixing
H =HNP at the maximum of the NP in the (H, 0)
scan; there, the shape consists of a narrow and a
broad peak, both centered at K = 0. Because the
temperature dependence of the K-scans follows
that of the H-scans (fig. S2) (28), the quasi-
elastic peak in the reciprocal space can be mod-
eled by a double 2D Lorentzian, a broad one and
a narrow one, centered respectively at qNP

c =
(0.325, 0) and at qBPc = (0.295, 0) (Fig. 2E).
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character and, because of strong quantum ther-
mal dynamical fluctuations, they acquire a truly
static character only below T3D. For YBCO and
NBCO, T3D is smaller than Tc, thus requiring
strongmagnetic fields or epitaxially grown sam-
ples to suppress superconductivity to obtain static
3D CDWs.
Although this theory can explain most of the

experimental findings, some questions remain
open. Other cuprate families will have to be
tested and the doping region extended to con-
firm the general applicability of the dynamic
CDF scenario. A BP, centered at q∥ ≈ qNPc and per-
sisting at high temperatures, has been observed
over the past few years in other cuprates (13, 38),
pointing toward a universality of the CDF phe-
nomenon. However, none of the aforementioned
experiments has been conclusive in this respect,
because a complete temperature dependence
and/or a discrimination of the quasi-elastic

signal from the inelastic one was missing. The
actual relation between the quasi-critical CDW
and the dynamical CDF must also be fully clar-
ified, with particular reference to the possible
spatial separation or coexistence of the two
phenomena, ultimately linked to the role of
disorder in the samples studied by scanning
tunneling microscope (7, 39, 40) and micro–
x-ray scattering (41) experiments.
The most intriguing finding of this work is the

ubiquitous presence (both in temperature and
doping) of a broad peak caused by dynamical
CDFs, which have small energies of a few meV
and extend over a broadmomentum range. There-
fore, they provide quite an effective low-energy
scattering mechanism for all the quasi-particles
on the Fermi surface. This makes these excita-
tions an appealing candidate for producing the
linear temperature dependence of the resistivity
in the normal state and other marginal Fermi

liquid phenomena that, since the early days of
HTS (42), have been the most prominently pe-
culiar properties of the cuprates.
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Fig. 4. Static and dynamic charge order in the phase diagram of the HTS cuprates. (A) The
T-p phase diagram of cuprates is typically marked by the antiferromagnetic, pseudogap, and
superconducting regions (respectively characterized by the onset temperatures TN, T*, and Tc).
Our results prove that most of these regions are pervaded by charge density modulations of some
sort. The narrow peak describes the CDWs, manifesting in a region (pale blue) below TQC (crosses).
These 2D CDWs are quasi-critical and are precursors of the static 3D CDWs (blue region). Even
though we cannot directly access this dome without a magnetic field, the temperatures T3D

(squares) that we infer from the T dependence of the NP FWHM are in agreement with those
previously determined by NMR and hard x-ray scattering experiments (15, 16). The broad peak
describes short-range charge density fluctuations (CDFs), which dominate the phase diagram (red
region), coexisting both with the quasi-critical 2D CDWs and with superconductivity, and persisting
even above T*. In contrast, CDFs disappear in undoped/antiferromagnetic samples (white region),
whereas their occurrence between p ~ 0.05 and p ~ 0.08 has yet to be determined. To evaluate the
characteristic energies w0 associated with the BP, we measured high-resolution RIXS spectra at
various temperatures on the samples OP90 and UD60. (B) Quasi-elastic component of the spectra
(after subtraction of the phonon contribution) at T = 90, 150, and 250 K, measured on sample OP90
at q|| = (0.31, 0). (C and D) The experimental 150 K–250 K and 90 K–150 K difference spectra,
presented in (B), are shown (spheres), together with the theoretical calculation (solid areas). The data
are in agreement with the theory, assuming w0 ≈ 15 meV at 150 and 250 K and w0 ≈ 7 meV at 90 K
[dashed lines in (C) and (D)].
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In UD cuprates at low T<TQC 
narrow-in-q CDW coexist with 
broad-in-q CDF
In OD or/and high T only CDF 
are present

CDF are a ubiquitous scaZering mechanism 
in cuprates

DO WE HAVE SUCH STRONG ISOTROPIC SCATTERERS IN CUPRATES?
Strong hint from RIXS experiments…..

i.e., the product of the T-dependent Bose distribution bðωÞ=
ð1# e#ω=kBT Þ

#1
with the imaginary part of the dynamical density fluc-

tuation propagator Dðq,ωÞ, where the _ constant is implicit so that
the ω terms stand for energy, and ω>0 for energy loss (Stokes) scat-
tering. The propagator is that of overdamped quantum critical
fluctuations13,20,21,40

Dðq,ωÞ=
1

ω0 Tð Þ+ ν0 q# qCDF

!! !!2 # iγω# ω2=!ω
" # , ð2Þ

with the CDF frequency ω following a parabolic dispersion from ω0 at
q =qCDF, with coefficient ν0; !ω is the cut-off frequency abovewhich the
CDF spectral density decreases more rapidly. The Landau damping
parameter γ is proportional to the electron density of states that sets a
measure of the phase space available for the decay of the fluctuations.
It can be shown that in q =qCDF the maximum of Im DðqCDF,ωÞ

$ %
is in

ω= ω0
γ , which is thus the energy Δ directly measured with very high

resolution RIXS at the criticalwave vector. Theminimum frequencyω0
is also linked to theCDF correlation length ξ by the relationω0 = ν0ξ

#2,
so that it can be independently determined from the width in q of the
CDF intensity peak, which is inversely proportional to ξ .

At a generic wave vector different from qCDF, the maximum of
Im½DðqCDF,ωÞ% is instead reached at ω= γ#1½ω0 Tð Þ+ ν0 q# qCDF

!! !!2%, an
energywhich is higher than∆. In particular, whenwe are far away from

qCDF the T-independent, quadratic term becomes relevant, and this
energy is maximum. We have named it Ω.

We have performed a global fit, which simultaneously considers
all the YBCOdata in both (H,0) and (H,H) directions at the 13measured
temperatures, using Eqs. (1) and (2), with four critical wave-vectors in
the first Brillouin zone qCDF = ±qCDF, 0

" #
, 0, ± qCDF
" #

. The experi-
mental data and the fitting results are compared in Fig. 2b–e. The
fitting leads to numerically robust estimates of ω0(T), ν0, γ and !ω (see
Methods). In particular, we find ω0 to increase from 5meV at Tc to
20meV at room temperature (see Fig. 2i), and ν0 = 1.26 eV (r.l.u.)−2 to
be close to the value previously found for optimal doping13,26. The
success of the global fittingwith the chosenmodel entails that the CDF
intensity has a major contribution in the quasi-elastic resonant scat-
tering at all q values far from the Γ point and causes the almost iso-
tropic increase of its intensity with the temperature, due to the finite
energy of the CDF. Thismeans that thewhole of the reciprocal space is
under the influence of CDF (see Supplementary Fig. 1e).

Given the importance of getting a reliable estimate of ω0(T), we
have analyzed the data also in a different way. We have isolated the
CDF peak close to qCDF by subtracting, at each T, the featureless (H,H)
data from the (H,0) ones. This subtraction allows us to remove from
the quasi-elastic RIXS intensity the contribution of the elastic scatter-
ingdue to surfacedefects,which is independent of themodulusofq; at
the same time, along the (H,H) direction the CDF contribution is still
present though rather flat, so that the shape, i.e. the FWHM, of the CDF
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Fig. 1 | Charge density fluctuations in overdoped cuprates. High resolution
(ΔE = 38meV) RIXS spectra have been measured on YBCO and Bi2212 (p ≈0.19) at
several momenta along both the (H,0) and (H,H) directions, at T = 80K and
T = 200K. a, b Intensitymaps of the difference (H,0) – (H,H) taken at 80K on YBCO
and Bi2212. c Fit of a RIXS spectrum on Bi2212 at a representative momentum. The
green, red, orange, blue Gaussians and the region below the gray dashed line
represent respectively the pure elastic (mainly given by the specular peak centered
at Γ = (0,0)), the CDF, the bond-stretching phonon modes, the bond-stretching
overtone and the paramagnons. Additional details on the fit are provided in the

Methods section. Given the position, intensity and width of the Gaussians, we have
obtained, as a function of q along the (H,0) direction and at both temperatures,
d the area of the elastic line, e the area of the CDF peak, and f the bond-stretching
phonon dispersion. The error bars are estimated using the 95% confidence interval
of the fit. In panel f the orange lines are guides to the eye while the gray line
represents the phonon dispersion in absence of any softening, as measured in
ref. 69. g–i Same as d–f, but on YBCO. In panel i, the gray line represents the
phonon dispersion in absence of any softening, as measured in ref. 70.
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Among the different phases and orders populating the
phase diagram of superconducting cuprates, the region
where the strange metal occurs has a preeminent role for

this class of compounds over a rather wide doping range pivoting
around optimal doping (see Fig. 1). Experimentally, the most
evident benchmark of this region is represented by the linear
behaviour of the electrical resistivity ρ(T) as a function of the
temperature T, from above a doping-dependent pseudogap
crossover temperature T* up to the highest attained temperatures.
Such occurrence is less evident in the underdoped regime, where
T* is almost as high as room temperature (e.g. at doping p ≈ 0.11,
see Fig. 1), while it dominates the transport properties of the
metallic state in its entirety above optimal doping (p ≈ 0.17–0.20,
see Fig. 1), where T* decreases and eventually merges with the
superconducting critical temperature Tc. Beyond such occurrence,
the main deviations from the paradigmatic behaviour dictated by
the Landau Fermi-liquid theory of standard metals are the optical
conductivity, following a non-Drude-like frequency dependence σ
(ω) ~ 1/ω, and the Raman scattering intensity, starting linearly in
frequency and then saturating into a flat electron continuum, as
expressed by the dependence of the susceptibility of the scattering
mediator, Im PðωÞ # ω=max ðT; jωjÞ. It was shown long ago1
that the phenomenological assumption of this form for Im PðωÞ
accounts for the above anomalous properties. In particular, the
related low-energy excitations, mediating a momentum-
independent electron–electron effective interaction, give rise to
a linear dependence of the imaginary part of the electron self-

energy both in frequency and temperature

Im Σðk;ωÞ # max ðT; jωjÞ: ð1Þ
Although there are theories that do not rely on a specific

mediator2, a huge effort has been devoted along the years to
identify the excitations mediating this scattering, mostly based on
the idea of proximity to some form of order: circulating currents3,
spin4,5, charge order6–10 or the phenomenological coupling to
incoherent fermions11.
A step forward in the identification of low energy excitations

that might be responsible for the strange-metal behaviour was
recently taken by means of resonant X-ray scattering (RXS),
performed on Nd1+xBa2−xCu3O7−δ (NBCO) and YBa2Cu3O7−δ

(YBCO) thin films12. After the first experimental evidence,
these excitations have been demonstrated to be a common feature
of different families of cuprates, namely HgBa2CuO4+δ

13,
La2−xSrxCuO4

14–16, La2−xBaxCuO4
17,18, and La1.675Eu0.2Sr0.125

CuO4
19, thereby indicating that these excitations may well pro-

vide a generic scattering mechanism in all cuprates.
In the following we will focus on NBCO or YBCO investigated

in the precursor experiment. These experiments not only con-
firmed the occurrence of incommensurate charge density waves
(CDWs), correlated over several lattice spacings, in the under-
doped region and below T*20–28, but, quite remarkably, also
identified a much larger amount of very short-ranged (≈3 lattice
spacings) dynamical charge density fluctuations (CDFs, see
Fig. 1), with a characteristic energy scale ω0 ≈ 10–15 meV. These
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Fig. 1 Temperature-vs-doping phase diagram of the superconducting cuprates. In the red region encompassed between the pseudogap temperature T*

and the upturn temperature Tup of the resistance, above the superconducting critical temperature Tc, in particular close to the optimally doped regime (e.g.
at hole doping p≈ 0.17), these compounds display a strange-metal behaviour. This is revealed in the experimental resistance R data by the presence of a
linear temperature dependence, displayed as a red thick solid line in the R(T) curves above the phase diagram. In the underdoped regime (e.g. at p≈ 0.11),
below T* (blue region) a downturn from the linear-in-T resistance is observed, since additional mechanisms lead to deviations from the strange-metal
regime. In the overdoped regime (e.g. at p≈ 0.21), below Tup (yellow region) the upturn from the linear-in-T resistance is due to the setting in of the Fermi-
liquid regime. Recent Resonant X-Ray Scattering experiments12 showed that also the charge order phenomenon is widespread in the phase diagram. In
particular, short-ranged dynamical charge density fluctuations (sketched by red waves highlighted in the red circle, and observed in the striped area)
populate the strange-metal region, while in the underdoped region, below the onset temperature TCDW, they coexist with the usual longer-ranged charge
density waves (sketched by blue waves in the blue circle, and observed in the wavy area). TN is the Néel temperature. The data of the R(T) curves are taken
from Refs. 12,40.
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Figure 3

Sketch of Fermi surface evolution as a function of doping. At p > p
?, the Fermi surface of

hole-doped cuprates is a large cylinder, either hole-like (if p < pFS), as drawn here (d), or
electron-like (if p > pFS). At p < p

?, the topology of the Fermi surface is still unclear. In the AF
phase at low p (Fig. 1), one expects small nodal hole pockets (a), containing a carrier density
n = p, consistent with the Hall number nH ' p in YBCO and LSCO at low p. If the AF phase
extended up to p

?, its Fermi surface just below p
? would be as sketched in (c), with additional

anti-nodal electron pockets (green). In the CDW phase (b), the Fermi surface contains a small
electron pocket, whose k-space location is still not established. In one scenario (32), the electron
pocket is located at the nodes.

and NMR (19) measurements showing that C(H) and the Knight shift do saturate above

25 T at T = 2-3 K. It was also shown that the field Hvs(T ) above which ⇢(H) becomes

non-zero, at the transition from vortex solid to vortex liquid, is such that Hvs(0) = Hc2(0)

as T ! 0, i.e. there is no vortex liquid at T = 0 (17). Therefore, by measuring Hvs(T ) vs T

via the resistivity and extrapolating to T = 0 one can estimate Hc2 (at T = 0). Applying

this procedure to an extensive set of high-field data on YBCO yields the phase diagram of

Hc2 vs p across the full doping range (Fig. 2a). Data from two other cuprates are added to

this plot. First YBa2Cu4O8 (Y124), a stoichiometric underdoped cuprate with Tc = 80 K

and Hc2 = 44 T, determined both directly from (H) and from ⇢(H) via Hvs(T ) (17).

Secondly Tl2Ba2CuO6 (Tl2201), in the strongly overdoped region. Defining p from Tc in

all three materials using the same conversion curve (with Tc
max = 94 K), the Hc2 data are

seen to fall on a single smooth curve of Hc2 vs p (Fig. 2a).

LSCO:
La2�xSrxCuO4

Nd-LSCO:
La1.6�xNd0.4SrxCuO4

Eu-LSCO:
La1.8�xEu0.2SrxCuO4

Hg1201:
HgBa2CuO6+�

The H�p diagram of Fig. 2a is our road map: it tells us how strong a field is required to

remove superconductivity (in those three materials) and it is a fingerprint of the underlying

ground state. With decreasing p from the right, the striking two-peak structure in Hc2(p) is

shaped by the following sequence of phases: it first rises in the strange metal phase (sec. 6),

until its highest point at p?, the onset of the pseudogap phase (sec. 5), below which it drops

down to a local minimum where CDW order is strongest (sec. 4), and rises again as CDW

weakens, to reach a second peak where CDW order gives way to incommensurate SDW

order, then dropping to zero where the phase of commensurate AF order sets in (Fig. 1a).

Given that the maximal field achievable today in pulsed magnets is 100 T, this means

that superconductivity cannot currently be suppressed down to T = 0 in pure YBCO in

the range 0.155 < p < 0.21. As shown earlier by Zn substitution (20), superconductivity is

most robust right around the pseudogap critical point, p? = 0.19. Nevertheless, applying

80 T enables one to study the normal state in that range down to at least 40 K (21).

In LSCO, where Tc
max ' 40 K (vs 94 K in YBCO), Hc2 is roughly 2 times smaller
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Figure 3 summarizes the outcome of the fit-
tings for the samples UD60 and OP90, whereas
fig. S6 reports the corresponding results for the
UD81 sample. The NP presents all the charac-
teristics previously observed in several under-
doped cuprates and commonly attributed to
the incommensurate CDWs. The BP shares with
the NP the position in the reciprocal space (al-
though with small differences; see fig. S7), but it

has a very different, almost constant, temper-
ature dependence. Therefore, we attribute the
BP to very short-range charge modulations
(i.e., to CDFs), as depicted by the reddish region
of the T-p phase diagram of Fig. 4A. Whereas
the full width at half maximum (FWHM) of the
NP follows a critical temperature dependence,
the temperature dependence of the BP width
is much weaker in the accessible temperature
range and within our experimental uncertain-
ties. Finally, although the amplitude of the NP
(i.e., the peak height) is larger than that of the
BP at low temperature, the total “volume” (i.e.,
the integrated scattering intensity) is always
dominated by the BP, at least in the accessi-
ble T range above the critical temperature Tc

(Fig. 3).
To further clarify the double character of the

phenomenon and to assess the possible dynam-
ical character of the CDFs, we studied the energy
associated with the BP by exploiting the high
resolution of our instruments. We measured Cu

L3 RIXS spectra on the OP90 and UD60 samples
at selected temperatures and at the wave vector
of the BP maximum. At all temperatures, the
main peak is slightly broader than the instru-
mental resolution (40 meV) and is not centered
at zero energy loss, with the inelastic component
stronger at higher T (fig. S10) (28). Contributions
to this quasi-elastic peak come from phonons,
from elastic diffuse scattering from the sample
surface, and from charge fluctuations. The pho-
non peak intensity is either T-independent (for
phonons with energies higher than 30 meV) or
decreases upon cooling down (at lower energies);
scattering from the surface is constant with T.
The scattering related to CDWs is the only
component expected to grow in intensity with
decreasing T. Figure 4B shows the quasi-elastic
component of three spectra taken on the opti-
mally doped sample at 90 K, 150 K, and 250 K,
and q|| = (0.31, 0), after subtraction of the pho-
non contribution, as estimated from the (H, H)
scan (see figs. S11 to S13 for details on how the
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Fig. 1. Quasi-elastic scan along the (H, 0)
direction for several YBa2Cu3O7–d and
Nd1+xBa2–xCu3O7–d films with different
oxygen dopings.The quasi-elastic intensity was
determined by integrating the Cu L3 RIXS
spectra measured at different q|| values in the
energy interval [–0.2 eV, +0.15 eV]. The
measurements were performed at different
temperatures on the following samples:
(A) Optimally doped NBCO, p ≈ 0.17.
(B) Underdoped YBCO, p ≈ 0.14. (C) Under-
doped NBCO, p ≈ 0.11. (D) Insulating
NBCO, p < 0.05. The inset in (C) shows the
peak intensity Ipeak versus T–1 for samples
OP90 (circles) and UD60 (squares). The
extrapolation to T → ∞ provides an estimate of
the intrinsic background of the signal (bgr).

Fig. 2. Two distinct
peaks in fits to NBCO
UD60 data. (A) Quasi-
elastic scan measured
along (H, 0) on sample
UD60 at T = 250 K
(red circles). (B) After
subtracting the linear
background, given by the
quasi-elastic scan
measured along the
Brillouin zone diagonal
[open squares in (A)], a
clear peak is still present,
which can be fitted by a
Lorentzian profile (dashed
line). (C) Same as (A), but
at T = 60 K (violet circles).
(D) After subtracting
the linear background
[open squares in (C)], the
data can be fitted with a
sum of two Lorentzian
profiles (solid line): one
broader (dashed line),
similar to thatmeasured at
250 K, and the second
one narrower and more
intense (dotted line).
(E) The 3D sketch shows
the quasi-elastic scans
measured along H (cubes)
and along K (spheres)
at T = 60 K on sample
UD60, together with the
Lorentzian profiles used to
fit them. A narrow peak
(NP, blue surface) emerges
at qNP

c = (0.325, 0) from a
much broader peak (BP,
red surface) centered at
qBP
c = (0.295, 0).
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CDW scattering doesn’t work
(Hlubina-Rice)

CDF scattering does work
It is nearly ISOTROPIC

CDW produce 
deviations from r~T
(and possibly SC)

CDF implement r~T
(but not SC) 
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Supplementary figure 4. Feynman diagram schematising the contribution of a charge

collective mode (wavy line) to the RXS spectra. The shaded rectangles schematically

represent the coupling between the incoming and outgoing photons (dashed blue lines)

with the conduction electron-hole pairs (solid blue lines). These shaded rectangles encode

the complicated processes with core-hole intermediate states (see text). (b) Example of an

high-resolution RXS spectrum of an optimally doped (Tc = 90K) Nd1+xBa2�xCu3O7��

sample at T = 250K and at the critical wavevector for CDFs q = Qc ⇡ (0.3, 0) r.l.u.

(empty squares). The contribution of phonon excitations and of the spin and particle-hole

excitations are shaded in light blue and green, respectively. The pure CDF spectrum

obtained subtracting these contributions is reported with filled squares.

describing either CDWs or CDFs [see Eq. (3) of the main text]. The function ⌘q is scaled

by 1/(2⇡)2 in order to make our results (in particular the value for ⌫̄) compatible with sup-

plementary reference 7, where the fit to RXS is performed with the continuum version of

supplementary equation (5), i.e., ⌘n(q) ! (qx � Qc
x)

2 + (qy � Qc
y)

2 and with the wavevec-

tor defined in r.l.u. The sum in supplementary equation (5) runs over the four equivalent

peaks along the H- and K-direction corresponding to the four equivalent CDW/CDF vectors

(±Qc, 0), (0,±Qc). In supplementary equation (5) we have implemented a lattice periodic

function (2⇡)2⌘n(q) = 4 � 2 cos(qx � Qc
x) � 2 cos(qy � Qc

y) so that peaks occur in all Bril-

louin zones. The fact that ⌘(q) is periodic and does not grow much away from the critical

7

w0~M is the characteristic energy of the CDF (8-25 meV, small because CDW-QCP not far)
But rather small correlation length xCDF~1-2 l (local in space broad peak in q)

The CDF parameters (qc, M, n, W,…) can be 
obtained from HR and LR RIXS spectra, (and EELS…)

Arpaia et al, Science 2019, Arpaia & Ghiringhelli, JPSJ 2021
Seibold et al, Commun. Phys. 2021
Arpaia et al., Nat. Commun. 2023, 14, 7198. 

Landau’s Fermi liquid (FL) theory is one of the most suc-
cessful paradigms in condensed matter physics and usually
describes very well the prominent properties of metals even

when the interaction is strong, like, e.g., in heavy-fermion metals
or in the normal (non-superfluid) phase of 3He. However, in the
last decades, a wealth of systems violating the paradigmatic
behavior has been discovered. In particular, it has been noticed
that in several different materials, like heavy fermions metals1,
iron-based superconductors2, organic metals like (TMTSF)2PF6,
high-temperature superconducting cuprates (for an extended
analysis of several materials see refs. 3,4), a non-FL behavior can
occur in the proximity of quantum critical points (QCPs), i.e.,
near zero-temperature second-order phase transitions, where the
uniform metallic state is unstable towards some ordered state. It is
worth mentioning that, apart from the paradigmatic case of the
one-dimensional Luttinger liquid, there are also theories for the
violation of the FL behavior that do not rely on an underlying
criticality5,6. In some cases, like in high-temperature super-
conducting cuprates (henceforth, cuprates), the ordered state may
be unaccomplished due to disorder, low dimensionality, and/or
competition with other phases, like superconductivity. Never-
theless, the non-FL behavior is observed also in these cases of
missed quantum criticality, showing that a mere tendency to
order and the presence of abundant order parameter fluctuations
(henceforth, fluctuations) may be sufficient to create a non-FL
state. The general underlying idea is that the fluctuations are
intrinsically dynamical, with a characteristic energy m becoming
smaller and smaller as the correlation length ξ grows larger and
larger, when the QCP is approached. In the paradigmatic case of a
Gaussian QCP in a metal, with a dynamical critical index z= 2,
the retarded propagator of the fluctuations with wavevector q and
frequency ω is7–10

Dðq;ωÞ ¼ mþ !νjq% qcj
2 % ω2=Ω% iγω

! "%1
; ð1Þ

where m ¼ !νξ%2 is the mass of the fluctuations, !ν is typically an
electron energy scale [we work with dimensionless momenta,
measured in reciprocal lattice units (r.l.u.) 2π/a], qc is the critical
wavevector, and Ω is a frequency cutoff. A crucial role in the
following will be played by the imaginary term in the denomi-
nator, which describes the Landau damping of the fluctuations, as
they decay in particle-hole pairs. The dimensionless parameter γ
is usually proportional to the electron density of states, which sets
a measure of the phase space available for the decay of the fluc-
tuations. It is worthwhile mentioning that the strong correlations
of the metal are customarily encoded in a renormalization of the
quasiparticle mass and of the effective residual interaction, e.g.,
within a slave-boson approach10–12. Once these effects are taken
into account, a random-phase approximation within the renor-
malized FL works well to describe the instabilities of the FL, e.g.,
towards a charge-ordered state, which is a well-established ten-
dency of cuprates, where a wealth of nearly critical and less cri-
tical fluctuations have been experimentally detected13. Of course,
other modes like plasmons and paramagnons mark the spectra of
these systems at high energies (some hundreds of meV), where
correlation effects surely play a substantial role14,15, but here we
are mostly interested in the low-energy physics of transport
phenomena. In this regime the fermionic quasiparticles mostly
interact with low-energy collective excitations with a slow over-
damped dynamics mostly determined by the proximity to (more
or less hidden) instabilities. In two dimensions and for a dyna-
mical critical index z= 2 (as appropriate to Landau-damped
collective modes) these low-energy modes are well described by
the Gaussian form of the fluctuation propagator reported in
Eq. (1). Clearly, in the Gaussian case, for ω= 0 and q ≈ qc one
obtains the standard Ornstein–Zernike form of the static

susceptibility. The same behavior of the fluctuations can be
obtained within a time-dependent Landau–Ginzburg approach,
where γ is the coefficient of the time derivative and the decay rate
of the fluctuations is given by τ%1

q ¼ ðmþ !νjq% qcj
2Þ=γ.

Approaching the QCP, ξ grows, m decreases and the fluctua-
tions become softer and softer, thereby mediating a stronger and
stronger interaction between the fermion quasiparticles (hence-
forth, simply quasiparticles). In two and three dimensions the
interaction could be strong enough to destroy the FL state16. For
ordering at finite wavevectors, though, there is a pitfall in this
scheme17: due to momentum conservation, this singular low-
energy scattering only occurs between quasiparticles near points
of the Fermi surface that are connected by q ~ qc (hot spots). All
other regions are essentially unaffected by this singular scattering
and most of the quasiparticles keep their standard FL properties.
As a result, for instance, in transport, a standard FL behavior
would occur, with a T2 FL-like resistivity17. Disorder may help to
blur and enlarge the hot regions18, but it does not completely
solve the above difficulty. Of course, this limitation does not
occur in cases where qc= 0 (like, e.g, near a ferromagnetic19, or a
circulating-current20, or a nematic21 QCP), or near a local QCP
(i.e., when the singular behavior persists locally for all q)22–25.
However, the very fact that similar non-FL behavior also occurs
near QCPs with finite qc calls for a revision of the above scheme
searching for a general and robust way to account for non-FL
phases irrespective of the ordering wavevector.

The main goal of the present work is to describe an alternative
scenario for the non-FL behavior, based on the idea that the decay
rate of the fluctuations τ%1

q becomes very small not only at q ≈ qc,
because of a diverging ξ, but rather at all q’s, because of a (nearly)
diverging γ, as T goes to zero at special values of the control
parameter as, e.g., doping in cuprates. We will adopt a phe-
nomenological approach and we will explicitly show that a finite ξ
and a large γ are generic sufficient conditions to obtain the most
prominent signatures of non-FL strange-metal behavior: a linear-
in-temperature (T) resistivity (even down to very low tempera-
ture) and a (seemingly) diverging specific heat. For the sake of
concreteness, we will consider the paradigmatic case of cuprates,
where at some specific doping both features are observed3,26,
having in mind that they also commonly occur in many other
systems like, e.g. heavy fermions1. This suggests that our proposal
might have a broad applicability.

Results and discussion
Dissipation-driven strange metal behavior. The above scenario
can be achieved on the basis of three simple and related ingre-
dients: (a) The proximity to a QCP, bringing the fluctuations to
sufficiently low energy; (b) Some quenching mechanism pre-
venting the full development of criticality so that the mass m and
the other parameters of the dynamical fluctuations do not vary in
a significant way with temperature; (c) Some mechanism driving
an increase of the Landau damping parameter γ. Indeed the non-
FL behavior persists down to a temperature scale TFL & ω0 '
m=γ ¼ !ν=ðξ2γÞ ¼ τ%1

qc
when ξ is finite and not particularly large.

In cuprates, recent resonant X-ray scattering (RXS) experiments13
show that conditions (a) and (b) hold: the occurrence of a tem-
perature dependent narrow peak due to charge density waves
testifies the proximity to a QCP (although hidden and not fully
attained due to the competition with the superconducting phase).
The concomitant occurrence of broad peak witnesses for the
presence of dynamical charge density fluctuations (CDFs) with
rather short correlation length and broad momentum distribu-
tion. These abundant CDFs are available to isotropically scatter
the quasiparticles over a broad range of momenta and no clear
distinction can be done between hot and cold Fermi surface
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wavevector, and Ω is a frequency cutoff. A crucial role in the
following will be played by the imaginary term in the denomi-
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other modes like plasmons and paramagnons mark the spectra of
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are mostly interested in the low-energy physics of transport
phenomena. In this regime the fermionic quasiparticles mostly
interact with low-energy collective excitations with a slow over-
damped dynamics mostly determined by the proximity to (more
or less hidden) instabilities. In two dimensions and for a dyna-
mical critical index z= 2 (as appropriate to Landau-damped
collective modes) these low-energy modes are well described by
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susceptibility. The same behavior of the fluctuations can be
obtained within a time-dependent Landau–Ginzburg approach,
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stronger interaction between the fermion quasiparticles (hence-
forth, simply quasiparticles). In two and three dimensions the
interaction could be strong enough to destroy the FL state16. For
ordering at finite wavevectors, though, there is a pitfall in this
scheme17: due to momentum conservation, this singular low-
energy scattering only occurs between quasiparticles near points
of the Fermi surface that are connected by q ~ qc (hot spots). All
other regions are essentially unaffected by this singular scattering
and most of the quasiparticles keep their standard FL properties.
As a result, for instance, in transport, a standard FL behavior
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blur and enlarge the hot regions18, but it does not completely
solve the above difficulty. Of course, this limitation does not
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(i.e., when the singular behavior persists locally for all q)22–25.
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having in mind that they also commonly occur in many other
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might have a broad applicability.
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venting the full development of criticality so that the mass m and
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The concomitant occurrence of broad peak witnesses for the
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The strategy is: (same for Bi2212, YBCO, LSCO)

1) Identify from RIXS the scattering mediators 

2) Calculate and fit resistivity 

3) Calculate and fit the optical scattering time
(and other quantities: magnetoresistance, 
Raman, ARPES, Seebeck, thermal conductivity, …)

4) Check w/T scaling (hallmark of MFL phenomenology) 

Supplementary Note 1

Calculation of the self-energy

We carried out a perturbative calculation of the self-energy corrections of the fermion

quasiparticles using the Feynman diagram of supplementary figure 1, where the solid line

represents a bare quasiparticle, and the wavy line may alternatively represent a CDF or a

CDW collective excitation.

Supplementary figure 1. Feynman diagram of the electron self-energy at the lowest

perturbative order. The solid lines represent the electron propagator, while the wavy line

represents either the CDF or the CDW correlator.

The analytic expression for the (retarded) imaginary part is (see supplementary reference

1)

Im⌃(k,!) = �g2
Z

d2q

(2⇡)2
(1)

⇥ (! � "k�q)[b("k�q) + f("k�q � !)]

[!0 + ⌫̄ ⌘q � (! � "k�q)2/⌦]2 + (! � "k�q)2
exp(�⌘q/⇤),

where b(z) = [ez/kBT � 1]�1 is the Bose function, f(z) = [ez/kBT +1]�1 is the Fermi function,

g is the coupling between electrons and CDFs or CDWs, and (2⇡)2⌘q = 4� 2 cos(qx�Qc
x)�

2 cos(qy � Qc
y) contains the information about the CDW/CDF vector Qc. The function

⌘q is scaled by 1/(2⇡)2 because in the fit to RXS the wavevector is defined in r.l.u. (see

supplementary note 2). For the evaluation of �⌃ we sum over all 4 equivalent wavevectors

(±Qc, 0) and (0,±Qc), with Qc ⇡ 0.3 r.l.u. Following supplementary reference 1, we in-

troduce an exponential cuto↵ which accounts for the suppression of the coupling between

CDFs/CDWs and quasiparticles away from Qc: ⇤ = 0.1 for CDF scattering and ⇤ = 0.5

for CDW scattering. The electron dispersion "k is taken from supplementary reference 2.

In supplementary figure 2 we show that the scattering due to CDFs stays isotropic even

for electron states away from the Fermi surface.

2



1st take-home message:
At T>Tc the strange metal is not so strange: It may just be a FL with
QP scattering with thermally excited nearly local low-energy
excitations.

In cuprates these can well be fully characterized CDF fluctuations.

So, what’s the problem?



But MCDF~10 meV ~100 K: how can we have linear r~T with w0~M<T down to 
a few Kelvin? LETTERSNATURE PHYSICS

multiplicity of the Fermi surface. By contrast, the Hall coefficient 
RH is not. In Fig. 2d, we compare RH(T) in Bi2212 and in Nd-LSCO 
(and PCCO). We see strong differences, brought about by the dif-
ferent anisotropies in either the inelastic scattering or the Fermi sur-
face, or both23. Nevertheless, ρ(T) is perfectly linear in both cases. 
Moreover, the coefficient A1

□ is the same despite the very different 
spectra of low-energy spin fluctuations, gapped in Bi2212 (ref. 24) 
and ungapped in Nd-LSCO (ref. 25). We conclude that a T-linear 
resistivity as T →  0 is a generic and robust property of cuprates.

Note that ρ(T) deviates from pure T-linearity above a certain 
temperature, and in this high-T regime a generic evolution has 
also been found in LSCO (ref. 26), with ρ(T) ~ A1T +  A2T2. Here we 
focus strictly on the low-T regime of pure T-linear resistivity (see 
Supplementary Section 12). In this regime, and close to the QCP 
of BaFe2(As1−xPx)2 (at x =  0.31), an empirical scaling relationship 
between applied magnetic field and temperature has been pro-
posed27, but this scaling does not work very well in Bi2212 (see 
Supplementary Section 11).

We now investigate the strength of the T-linear resistivity; that is, 
the magnitude of A1. In Fig. 3b, we plot A1

□ versus p for hole-doped 
cuprates. We see from the LSCO data8 that A1

□ increases with decreas-
ing p (Fig. 1b), from A1

□ ~ 8 Ω  K−1 at p =  0.26 to A1
□ ~ 15 Ω  K−1 at 

p =  0.21 (see Supplementary Table 2 in Supplementary Section 13 and 
Methods). In Nd-LSCO, we see a similar increase (Figs. 1c and 3b),  
when pressure12 is used to suppress the onset of the pseudogap at 
p =  0.22 and p =  0.23 (see Supplementary Section 4). In Fig. 1d, 
we present our data on PCCO at x =  0.17 (see also Supplementary 

Section 5), and compare with previous data on LCCO (ref. 14; 
Supplementary Section 6). In Fig. 4b, we plot A1

□ versus x for elec-
tron-doped cuprates, and see that A1

□ also increases with decreas-
ing x, from A1

□ ~ 1.5 Ω  K−1 at x =  0.17 to A1
□ ~ 3 Ω  K−1 at x =  0.15 (see 

Supplementary Table 4 in Supplementary Section 13 and Methods). 
Note that these values are five times smaller than in hole-doped 
cuprates.

To summarize: A1
□ increases as the doping is reduced in both 

hole-doped and electron-doped cuprates; A1
□ is much larger in 

hole-doped cuprates; T-linear resistivity as T →  0 is observed 
over a range of doping, not just at one doping; T-linear resistiv-
ity does not depend on the nature of the inelastic scattering pro-
cess (hole-doped versus electron-doped) or on the topology of 
the Fermi surface (LSCO versus NCCO, Bi2212 versus Nd-LSCO; 
Supplementary Section 1).

To explain these experimental facts, we consider the empirical 
observation that the strength of the T-linear resistivity for several 
metals is approximately given by a scattering rate that has a uni-
versal value, namely ħ/τ =  kBT (ref. 10), and test it in cuprates. This 
observation suggests that a T-linear regime will be observed when-
ever 1/τ reaches its Planckian limit, kBT/ħ, irrespective of the under-
lying mechanism for inelastic scattering9. In the following, we use 
a standard Fermi-liquid approach to extract effective masses and 
inelastic scattering rates, as in ref. 10. In the simple case of an iso-
tropic Fermi surface, the connection between ρ and τ is given by 
the Drude formula, ρ =  (m*/ne2) (1/τ), where n is the carrier den-
sity and m* is the effective mass. Thus, when ρ(T) =  ρ0 +  A1T, then 
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Fig. 1 | T-linear resistivity in five overdoped cuprates. In-plane electrical resistivity ρ of cuprates showing a T-linear resistivity at low temperature.  
a, Nd-LSCO at p!= !0.24 (blue, H!= !16!T; from ref.!11) and Bi2212 at p!= !0.23 (red squares, H!= !55!T; this work, Fig. 2a). b, Temperature-dependent part of the 
resistivity, ρ(T)!− !ρ0, for LSCO at p!= !0.21 (green, H!= !48!T; from ref.!8), p!= !0.23 (orange, H!= !48!T; from ref.!8), p!= !0.26 (blue, H!= !18!T; from ref.!42)  
(see Supplementary Section 7). c, ρ(T)!−!ρ0 for Nd-LSCO at H!= !33!T, at p!= !0.22 (green) and 0.23 (orange) (from ref.!12) and at p!= !0.24 (blue; from ref.!7). 
For p!= !0.22 and 0.23, a pressure of 2!GPa was applied to suppress the pseudogap phase (see Supplementary Section 4). d, ρ(T)!− !ρ0 for LCCO at x!= !0.15 
(green, H!= !8!T), x!= !0.16 (orange, H!= !6.5!T) and x!= !0.17 (blue, H!= !4!T) (from ref.!14), and PCCO at x!= !0.17 (red, H!= !16!T; this work, see Supplementary 
Section 5). All dashed lines are a linear fit.
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With strong magnetic 
fields one can explore 
low temperatures T<Tc



Larger g = longer lifetime t of CDF ⇒
linear r~T down to lower temperature

regions27. This was the first explicit example that a quenched
criticality with a finite ordering wavevector qc can still give rise to
strong but isotropic scattering, thereby bypassing the problem
that in standard hot spot models most electrons contribute with
a ~ T2 scattering rate to transport17. This shows that conditions
(a) and (b) are enough to account for a linear-in-T resistivity
above TFL. Condition (c) becomes instead mandatory because an
increasing γ is needed to extend to lower temperatures the non-
FL behavior, accounting for the persistence of the linear resistivity
observed down to a few Kelvins, which is the so-called strange-
metal behavior, sometimes also referred to as the Planckian
behavior3,28 (for a distinction between the strange-metal and the
Planckian behavior, see below), as well as a seemingly diverging
specific heat26,29 (see below).

To address this issue, we investigate the effects of an increasing
γ on the fluctuations, which provide both a broad scattering
mechanism for resistivity and low-energy excitations for the
specific heat. From the retarded propagator we obtain the spectral
density of the fluctuations11,30–32

Im Dðq;ωÞ ¼
γω

mþ !νjq% qcj
2 % ω2=Ω

! "2 þ γ2ω2
;

which, for q= qc, is maximum at ω ≈ ω0≡m/γ. For large γ
(whatever the reason), ω0 is much smaller than m and sets the
characteristic energy scale of the dynamical fluctuations. As
mentioned above, a large γ suppresses the energy scales associated
with τ%1

q at all q’s [One could even argue that when this slow
dynamics of the small droplets of the fluctuations (of order ξ) is
reached, a kind of almost persistent glassy state is likely formed].
Figure 1 (a) and (b) display this shift to lower frequencies of

bðωÞ Im DðωÞ and Im DðωÞ when γ increases [bðωÞ ¼ ðeω=T % 1Þ%1

being the Bose function]. Panel (c) schematically shows the
corresponding extension of the linear resistivity down to lower and
lower temperatures. Indeed, although the collective fluctuations obey
the Bose statistics, at any temperature T >ω0 they acquire a
semiclassical character and their thermal Bose distribution becomes
linear in T, b(ω)≈ T/ω. Notice that this is the usual situation for
phonons when T is above their Debye temperature. The only
difference here is that a small/moderate m (due to the proximity to a
QCP) and the large γ conspire to render the Debye scale of the
fluctuations particularly small or even vanishing if γ may diverge,
while m stays finite. Notice also that the integrated weight of the
thermally excited fluctuations,

R
dω bðωÞ Im DðωÞ, depends only

very weakly on γ.

Resistivity in cuprates. In Fig. 2 we report the experimental data
for Nd-La2−xSrxCuO4 and Eu-La2−xSrxCuO4 samples with
x= 0.24 (from ref. 26, the error bars of the data are smaller than
the symbol size), and the resistivity calculated by solving the
Boltzmann equation. The scattering rate was obtained from the
imaginary part of the electron self-energy, computed at second
order in the coupling g between electron quasiparticles and CDFs
of the form given by Eq. (1). Details are given in the “Methods”
section and in ref. 27.

This calculation follows closely the approach used in ref. 27 for
the fermion tight-binding dispersion, the calculation of the
electron scattering rate, and the solution of the Boltzmann
equation. In particular, we incorporate an elastic scattering rate
which is responsible for a finite resistivity at T= 0 and which is
also always present in the experimental data (note, e.g., that in
Fig. 1 of ref. 3, the reported resistivities are the difference with
respect to their value extrapolated to T= 0).

Regarding the parameters of the fluctuations, these were
extracted from RXS experiments on a NdBa2Cu3O7−y sample,
consistently leading to a deviation from linearity below

TFL ≈ 100 K in agreement with the resistivity data. Here, we
consider the case of Nd-La2−xSrxCuO4, where resistivity under
strong magnetic fields is linear down to T ≈ 5 K. Unfortunately,
although RXS experiments recently confirmed also for these
cuprates the presence of CDFs with broad momentum
distribution33, detailed data are not available to extract their
parameters. This is why we assume here that the parameters fitted
from RXS data in NdBa2Cu3O7−y are still reasonable estimates for

Fig. 1 Implications of the γ parameter. Sketch of the shift induced by an
increasing damping parameter γ= 1→ 30 on the fluctuation spectral
function Im D in the presence (a) and in the absence (b) of a Bose thermal
distribution; (c) sketch of the effect on the resistivity induced by the
decrease of the characteristic energy ω0≡m/γ (with m= 10 meV) of the
fluctuations responsible for the quasiparticle scattering, with the scattering
rate given by the imaginary part of the electron self-energy, computed at
second order in the coupling g between electron quasiparticles and
fluctuations. The orange dotted line represents the Planckian limit (linearity
down to T= 0), corresponding to a divergent γ.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00786-y ARTICLE

COMMUNICATIONS PHYSICS | ���������� �(2022)�5:10� | https://doi.org/10.1038/s42005-021-00786-y | www.nature.com/commsphys 3

g describes the Landau damping: the mode 
decays in p-h pairs in time t=gt0
When g grows, the characteristic energy 
w0=M/g of the CDF decreases

M

Landau’s Fermi liquid (FL) theory is one of the most suc-
cessful paradigms in condensed matter physics and usually
describes very well the prominent properties of metals even

when the interaction is strong, like, e.g., in heavy-fermion metals
or in the normal (non-superfluid) phase of 3He. However, in the
last decades, a wealth of systems violating the paradigmatic
behavior has been discovered. In particular, it has been noticed
that in several different materials, like heavy fermions metals1,
iron-based superconductors2, organic metals like (TMTSF)2PF6,
high-temperature superconducting cuprates (for an extended
analysis of several materials see refs. 3,4), a non-FL behavior can
occur in the proximity of quantum critical points (QCPs), i.e.,
near zero-temperature second-order phase transitions, where the
uniform metallic state is unstable towards some ordered state. It is
worth mentioning that, apart from the paradigmatic case of the
one-dimensional Luttinger liquid, there are also theories for the
violation of the FL behavior that do not rely on an underlying
criticality5,6. In some cases, like in high-temperature super-
conducting cuprates (henceforth, cuprates), the ordered state may
be unaccomplished due to disorder, low dimensionality, and/or
competition with other phases, like superconductivity. Never-
theless, the non-FL behavior is observed also in these cases of
missed quantum criticality, showing that a mere tendency to
order and the presence of abundant order parameter fluctuations
(henceforth, fluctuations) may be sufficient to create a non-FL
state. The general underlying idea is that the fluctuations are
intrinsically dynamical, with a characteristic energy m becoming
smaller and smaller as the correlation length ξ grows larger and
larger, when the QCP is approached. In the paradigmatic case of a
Gaussian QCP in a metal, with a dynamical critical index z= 2,
the retarded propagator of the fluctuations with wavevector q and
frequency ω is7–10

Dðq;ωÞ ¼ mþ !νjq% qcj
2 % ω2=Ω% iγω

! "%1
; ð1Þ

where m ¼ !νξ%2 is the mass of the fluctuations, !ν is typically an
electron energy scale [we work with dimensionless momenta,
measured in reciprocal lattice units (r.l.u.) 2π/a], qc is the critical
wavevector, and Ω is a frequency cutoff. A crucial role in the
following will be played by the imaginary term in the denomi-
nator, which describes the Landau damping of the fluctuations, as
they decay in particle-hole pairs. The dimensionless parameter γ
is usually proportional to the electron density of states, which sets
a measure of the phase space available for the decay of the fluc-
tuations. It is worthwhile mentioning that the strong correlations
of the metal are customarily encoded in a renormalization of the
quasiparticle mass and of the effective residual interaction, e.g.,
within a slave-boson approach10–12. Once these effects are taken
into account, a random-phase approximation within the renor-
malized FL works well to describe the instabilities of the FL, e.g.,
towards a charge-ordered state, which is a well-established ten-
dency of cuprates, where a wealth of nearly critical and less cri-
tical fluctuations have been experimentally detected13. Of course,
other modes like plasmons and paramagnons mark the spectra of
these systems at high energies (some hundreds of meV), where
correlation effects surely play a substantial role14,15, but here we
are mostly interested in the low-energy physics of transport
phenomena. In this regime the fermionic quasiparticles mostly
interact with low-energy collective excitations with a slow over-
damped dynamics mostly determined by the proximity to (more
or less hidden) instabilities. In two dimensions and for a dyna-
mical critical index z= 2 (as appropriate to Landau-damped
collective modes) these low-energy modes are well described by
the Gaussian form of the fluctuation propagator reported in
Eq. (1). Clearly, in the Gaussian case, for ω= 0 and q ≈ qc one
obtains the standard Ornstein–Zernike form of the static

susceptibility. The same behavior of the fluctuations can be
obtained within a time-dependent Landau–Ginzburg approach,
where γ is the coefficient of the time derivative and the decay rate
of the fluctuations is given by τ%1

q ¼ ðmþ !νjq% qcj
2Þ=γ.

Approaching the QCP, ξ grows, m decreases and the fluctua-
tions become softer and softer, thereby mediating a stronger and
stronger interaction between the fermion quasiparticles (hence-
forth, simply quasiparticles). In two and three dimensions the
interaction could be strong enough to destroy the FL state16. For
ordering at finite wavevectors, though, there is a pitfall in this
scheme17: due to momentum conservation, this singular low-
energy scattering only occurs between quasiparticles near points
of the Fermi surface that are connected by q ~ qc (hot spots). All
other regions are essentially unaffected by this singular scattering
and most of the quasiparticles keep their standard FL properties.
As a result, for instance, in transport, a standard FL behavior
would occur, with a T2 FL-like resistivity17. Disorder may help to
blur and enlarge the hot regions18, but it does not completely
solve the above difficulty. Of course, this limitation does not
occur in cases where qc= 0 (like, e.g, near a ferromagnetic19, or a
circulating-current20, or a nematic21 QCP), or near a local QCP
(i.e., when the singular behavior persists locally for all q)22–25.
However, the very fact that similar non-FL behavior also occurs
near QCPs with finite qc calls for a revision of the above scheme
searching for a general and robust way to account for non-FL
phases irrespective of the ordering wavevector.
The main goal of the present work is to describe an alternative

scenario for the non-FL behavior, based on the idea that the decay
rate of the fluctuations τ%1

q becomes very small not only at q ≈ qc,
because of a diverging ξ, but rather at all q’s, because of a (nearly)
diverging γ, as T goes to zero at special values of the control
parameter as, e.g., doping in cuprates. We will adopt a phe-
nomenological approach and we will explicitly show that a finite ξ
and a large γ are generic sufficient conditions to obtain the most
prominent signatures of non-FL strange-metal behavior: a linear-
in-temperature (T) resistivity (even down to very low tempera-
ture) and a (seemingly) diverging specific heat. For the sake of
concreteness, we will consider the paradigmatic case of cuprates,
where at some specific doping both features are observed3,26,
having in mind that they also commonly occur in many other
systems like, e.g. heavy fermions1. This suggests that our proposal
might have a broad applicability.

Results and discussion
Dissipation-driven strange metal behavior. The above scenario
can be achieved on the basis of three simple and related ingre-
dients: (a) The proximity to a QCP, bringing the fluctuations to
sufficiently low energy; (b) Some quenching mechanism pre-
venting the full development of criticality so that the mass m and
the other parameters of the dynamical fluctuations do not vary in
a significant way with temperature; (c) Some mechanism driving
an increase of the Landau damping parameter γ. Indeed the non-
FL behavior persists down to a temperature scale TFL & ω0 '
m=γ ¼ !ν=ðξ2γÞ ¼ τ%1

qc
when ξ is finite and not particularly large.

In cuprates, recent resonant X-ray scattering (RXS) experiments13
show that conditions (a) and (b) hold: the occurrence of a tem-
perature dependent narrow peak due to charge density waves
testifies the proximity to a QCP (although hidden and not fully
attained due to the competition with the superconducting phase).
The concomitant occurrence of broad peak witnesses for the
presence of dynamical charge density fluctuations (CDFs) with
rather short correlation length and broad momentum distribu-
tion. These abundant CDFs are available to isotropically scatter
the quasiparticles over a broad range of momenta and no clear
distinction can be done between hot and cold Fermi surface
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regions27. This was the first explicit example that a quenched
criticality with a finite ordering wavevector qc can still give rise to
strong but isotropic scattering, thereby bypassing the problem
that in standard hot spot models most electrons contribute with
a ~ T2 scattering rate to transport17. This shows that conditions
(a) and (b) are enough to account for a linear-in-T resistivity
above TFL. Condition (c) becomes instead mandatory because an
increasing γ is needed to extend to lower temperatures the non-
FL behavior, accounting for the persistence of the linear resistivity
observed down to a few Kelvins, which is the so-called strange-
metal behavior, sometimes also referred to as the Planckian
behavior3,28 (for a distinction between the strange-metal and the
Planckian behavior, see below), as well as a seemingly diverging
specific heat26,29 (see below).

To address this issue, we investigate the effects of an increasing
γ on the fluctuations, which provide both a broad scattering
mechanism for resistivity and low-energy excitations for the
specific heat. From the retarded propagator we obtain the spectral
density of the fluctuations11,30–32

Im Dðq;ωÞ ¼
γω

mþ !νjq% qcj
2 % ω2=Ω

! "2 þ γ2ω2
;

which, for q= qc, is maximum at ω ≈ ω0≡m/γ. For large γ
(whatever the reason), ω0 is much smaller than m and sets the
characteristic energy scale of the dynamical fluctuations. As
mentioned above, a large γ suppresses the energy scales associated
with τ%1

q at all q’s [One could even argue that when this slow
dynamics of the small droplets of the fluctuations (of order ξ) is
reached, a kind of almost persistent glassy state is likely formed].

Figure 1 (a) and (b) display this shift to lower frequencies of
bðωÞ Im DðωÞ and Im DðωÞ when γ increases [bðωÞ ¼ ðeω=T % 1Þ%1

being the Bose function]. Panel (c) schematically shows the
corresponding extension of the linear resistivity down to lower and
lower temperatures. Indeed, although the collective fluctuations obey
the Bose statistics, at any temperature T >ω0 they acquire a
semiclassical character and their thermal Bose distribution becomes
linear in T, b(ω)≈ T/ω. Notice that this is the usual situation for
phonons when T is above their Debye temperature. The only
difference here is that a small/moderate m (due to the proximity to a
QCP) and the large γ conspire to render the Debye scale of the
fluctuations particularly small or even vanishing if γ may diverge,
while m stays finite. Notice also that the integrated weight of the
thermally excited fluctuations,

R
dω bðωÞ Im DðωÞ, depends only

very weakly on γ.

Resistivity in cuprates. In Fig. 2 we report the experimental data
for Nd-La2−xSrxCuO4 and Eu-La2−xSrxCuO4 samples with
x= 0.24 (from ref. 26, the error bars of the data are smaller than
the symbol size), and the resistivity calculated by solving the
Boltzmann equation. The scattering rate was obtained from the
imaginary part of the electron self-energy, computed at second
order in the coupling g between electron quasiparticles and CDFs
of the form given by Eq. (1). Details are given in the “Methods”
section and in ref. 27.

This calculation follows closely the approach used in ref. 27 for
the fermion tight-binding dispersion, the calculation of the
electron scattering rate, and the solution of the Boltzmann
equation. In particular, we incorporate an elastic scattering rate
which is responsible for a finite resistivity at T= 0 and which is
also always present in the experimental data (note, e.g., that in
Fig. 1 of ref. 3, the reported resistivities are the difference with
respect to their value extrapolated to T= 0).

Regarding the parameters of the fluctuations, these were
extracted from RXS experiments on a NdBa2Cu3O7−y sample,
consistently leading to a deviation from linearity below

TFL ≈ 100 K in agreement with the resistivity data. Here, we
consider the case of Nd-La2−xSrxCuO4, where resistivity under
strong magnetic fields is linear down to T ≈ 5 K. Unfortunately,
although RXS experiments recently confirmed also for these
cuprates the presence of CDFs with broad momentum
distribution33, detailed data are not available to extract their
parameters. This is why we assume here that the parameters fitted
from RXS data in NdBa2Cu3O7−y are still reasonable estimates for

Fig. 1 Implications of the γ parameter. Sketch of the shift induced by an
increasing damping parameter γ= 1→ 30 on the fluctuation spectral
function Im D in the presence (a) and in the absence (b) of a Bose thermal
distribution; (c) sketch of the effect on the resistivity induced by the
decrease of the characteristic energy ω0≡m/γ (with m= 10 meV) of the
fluctuations responsible for the quasiparticle scattering, with the scattering
rate given by the imaginary part of the electron self-energy, computed at
second order in the coupling g between electron quasiparticles and
fluctuations. The orange dotted line represents the Planckian limit (linearity
down to T= 0), corresponding to a divergent γ.
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TFL~M/g~100K/g shift the focus from M to g!

Damping is the answer



2nd take-home message:
The dissipation parameter g can rule the decrease of w0=M/g for finite x
M=nx-2 stays finite: no critical slowing down due to x→∞

Since x stays small the momentum distribuXon 
stays  broad  ⇒ isotropic sca?ering 
coexists with small energy w0=M/g

DissipaQon-driven strange metal behavior
Sergio Caprara, Carlo Di Castro, Giovanni Mirarchi, Götz Seibold  & MG 
Commun. Phys. 2022

GENERAL CONSEQUENCE: At T=0 the system is still FL, but the (T,w) range of FL shrinks by 
decreasing T (increasing g)  ⇒ SHRINKING FERMI LIQUID (SFL)

Let’s assume that g increases by decreasing T, e.g. g~log(1/T), then the FL scale M/g shrinks



Let’s benchmark SFL with MFL
MFL SFL

Interaction due to momentum indep. (local)
mediator

InteracQon due to momentum indep. (local)
CDF, phonons, paramagnons, p-h pairs…

w

Slo
pe 1/TImD

T

|"#$(&, ()|~+,&! + (! 
Standard MFL w/T scaling form

MFL has divergent QP mass 
mQP*~log(1/T)

Self-energy

M/g(T)

M/g0
|"#$(&, ()|~+ ,-(. /⁄ )! + &! + (! −. /⁄ 3 

Self-energy

SFL has an almost scaling 
form when M/g(T)→0

mQP* =m/Z  is finite

FL for w<M/g

SFL
region



|"#$(&, ()|~+ ,-(. /⁄ )! + &! + (! −. /⁄ 3 
SFL has quasi-scaling form if M/g is small… 

• At w>M/g, s(w,T) quite similar to the MFL case  
(see Michon et al, Nat Commun. 2023)

Mirarchi et al. Condens.Ma1er2024,9,14. 

SOME EXPERIMENTAL CONSEQUENCES:
OPTICAL CONDUCTIVITY

The interaction is (almost) momentum independent ⇒ vertex corrections negligible
in current-current response
⇒S(w,T) (almost) fully determines the optical conductivity s(w,T)

tains a !-like Drude term, while the critical CM’s may give
absorption at finite frequencies.

The RPA effective interaction of Fig. 1!b", "= !V−1

−#"−1 #here #!q"$−T%kG0!k+q"G0!k" is the QP polariza-
tion bubble&, near the QCP has the generic form

"!q" = − #$
−1!m + %q + '$n' + $n

2/&̄"−1, !1"

for small frequencies and q( ±qc. Here, #$$'##!qc ,$n"
−#!qc ,0"& / '$n''$n=0, and %q(''q(qc'2. m, ', and &̄ are
model-dependent coefficients which result from the second-
order expansion of V−1−# around qc and $n=0. Except for
the $n

2 term, "!q" has the general hydrodynamic form of a
propagator for diffusive CM’s !damped by QP’s" near a
Gaussian QCP. Here m, proportional to the square of the
inverse correlation length, is the CM mass measuring the
distance from criticality. If the frequency dependence of "
only arises from the QP bubble #—i.e., if the bare interac-
tion V is purely static—the optical response is zero #the dia-
grams of Fig. 1!c" cancel each other&, as we show below. On
the other hand, if the bare interaction V has its own dynam-
ics, a finite )!&" is obtained. We analyze these two situa-
tions, and for concreteness we fix the values of the param-
eters, adopting as an example the model of Ref. 15. There, a
bare interaction V!q"=V0!q"−*$̄2!$̄2+$n

2"−1 was consid-
ered, arising from both a static short- and long-range Cou-
lomb repulsion V0 and from the coupling to a dispersionless
phonon of frequency $̄. For moderate electron-phonon cou-
pling *+%F, where %F is the typical QP Fermi energy !in
cuprates, e.g., %F(0.3 eV", this interaction can lead to a
charge-ordering instability, at a wave vector qc. Within this
model we find m$#$

−1)#*−V0!qc"&−1+#!qc ,0"* and &̄
$*−1$̄2#*−V0!qc"&2#$. In Refs. 2 and 15 the instability,
signaled by a vanishing m, occurred for *+V0
+'#!qc ,0"'−1+%F. Then, we estimate '+%F /kF

2 !kF is the

Fermi momentum" and &̄+ $̄!$̄ /%F".
Current-current response function. Near criticality, the

diagrams of Fig. 1!c", with incoming zero momentum and
finite frequency &l, are dominated by the poles of the CM
propagators. Then, we write the vertex–self-energy !VS" and
Aslamazov-Larkin !AL" contributions to the current-current
response function , j j

-- as T%q,$n
VVS

--!$n ,&l""!q ,$n" and
1
2T%q,$n

#VAL
- !$n ,&l"&2"!q ,$n""!q ,&l+$n", where -=x ,y,

and we have exploited the relation "!q ,$n"="!−q ,$n". The
vertices VVS

-- and VAL
- come from the integration on the QP

loops. To perform an analytic calculation, we adopt the stan-
dard procedure of linearizing the QP dispersion around the
points of the Fermi surface connected by qc #hot spots
!HS’s"&.1 Then, we find !see also Ref. 16"

VVS
--!$n,&l" = −

e2

2
#$!u-"2&l

−2

.!'&l + $n' − 2'$n' + '&l − $n'" , !2"

VAL
- !$n,&l" = − ie#$u-&l

−1!'&l + $n' − '$n'" , !3"

where e is the electron charge, u-$vHS1
- −vHS2

- , and vHS
- is

the - component of the Fermi velocity at the HS’s !see Fig.
2". The vertices vanish identically in the direction perpen-
dicular to qc—i.e., for -=y—since in Fig. 2 we took qc
along the x axis and vHS1

y =vHS2
y —i.e., uy $0. Thus , j j

yy!&l"
$0 for &l!0, regardless of the retarded or static character
of the bare interaction V.

To calculate , j j
xx, we exploit the identity

"!q,$n""!q,&l + $n" =
#$

−1#"!q,&l + $n" − "!q,$n"&

'&l + $n' − '$n' +
&l

&̄
!&l + 2$n"

,

!4"

which is immediately derived from Eq. !1" and allows us to
write the AL contribution to , j j

xx as

FIG. 1. !a" Typical diagram of our BK generating functional.
The solid and dashed lines represent the QP propagator and the bare
interaction V!q", respectively. !b" Bubble resummation to obtain the
RPA-dressed CM propagator !wavy line". !c" Diagrams for the
current-current response, obtained from current-vertex insertions
!solid dots" in the diagrams of the BK functional. AL, V, and S
stand for Aslamazov-Larkin-like, vertex, and self-energy diagrams,
respectively.

FIG. 2. Sketch of a two-dimensional Fermi surface with four
HS’s connected by a generic incommensurate critical wave vector
qc= !qc ,0". Fermi velocities at the HS’s and their components are
also shown.

CAPRARA et al. PHYSICAL REVIEW B 75, 140505!R" !2007"
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Optical conductivity expts seem to agree well with MFL 
and with SFL as well…



SO FAR WE LOOKED AT POSSIBLE CONSEQUENCES OF

ASSUMING g(T)~log(T0/T)

ARE THERE INDICATIONS THAT g INDEED DOES GROW LARGE?



specific heat both from electrons and collective CDF
CV

el~mQP*~3-5 me finite electron contribution
CV

bos/T~ g~log(1/T)     singular bosonic contribution
5

is obtained as

U =
X

q
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Z 1
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The specific heat is obtained by di↵erentiating the in-
ternal energy with respect to T and dividing by the size
of the system (e.g., the number N of unit cells), yielding
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where an e↵ective density of states
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has been defined.
We consider a three-dimensional unit cell, but we as-

sume that the dispersion in ~q-space is only on the x, y
plane. Introducing a density of states for the variable
⌫̄|~q � ~qc|2,
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where, in order to find an analytical expression, we ap-
proximate the quarter of the Brillouin zone with a circle
centered at each of the four equivalent ~qc, whith radius q̄,
and ⇤ ⇡ ⌫̄q̄2. We then obtain the analytical expression
of the e↵ective spectral density of the CDF
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Since we are considering the limit of low temperatures

it is reasonable to assume both !⌧
q

⌦(m+ ⇤) and

�!⌧m+ ⇤. In this regime, we can approximate ⇢B(!)

as ⇢B(!)⇡ �
⇡2⌫̄ log
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◆
. If one uses r.l.u., then the re-

placement ⌫̄ ! ⌫̄/(4⇡2) must be performed, and one finds
the expression for the low-frequency asymptotic behavior
of ⇢B(!) given in the main text.

The approximation becomes more an more accurate at
lower and lower temperature. From this equation it is
evident that ⇢B(!) is a linear function of �, and so is the
specific heat. Since ⇢B(!) is a constant function of ! in
the regime of our interest, we get the explicit expression
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Our final expression for the ratio CB
V /T is then
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Again, if one uses r.l.u., the substitution ⌫̄ ! ⌫̄/(4⇡2)
must be performed.

Code availability

The theoretical analysis was carried out with FORTRAN
codes to implement various required numerical integra-
tions appearing in the Boltzmann equation, cf. Methods,
and for the evaluation of the specific heat, cf. Eq. (3).
Although the same task could easily by performed with
Mathematica or other standard softwares, the used FOR-
TRAN codes are available from one of the corresponding
authors [M.G.] on reasonable request.
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specific heat and our theory, where this is due to an increasing
damping of the relevant collective modes. Within our approach,
the fermion contribution to the specific heat is finite even when γ
diverges at p= pc.

Conclusion
The above analysis shows that two nontrivial features of the
strange-metal behavior occurring near QCPs can be attributed to,
and accounted for by, the damping parameter γ only. We still lack
a microscopic scheme to determine the doping and temperature
dependence of γ, and, within the scope of the present work,
we rely on the phenomenological expression of Eq. (2). Therefore
also the Tlog ðT0=TÞ behavior of the specific heat at pc is only
phenomenologically captured by our theory. Nevertheless, we
point out that our approach outlines a general paradigmatic
change, shifting the relevance from the divergence of the corre-
lation length ξ to the increase (possibly divergence) of dissipation.
This is what renders our scheme different from the proposal of a
local QCP put forward long ago in ref. 22. In this latter case the
critical behavior of the imaginary part (i.e., damping) of the self-
energy of the critical fluctuations, is sublinear iγ0ω1−α, which
somehow rephrases our condition of an increasing damping at
low energy scales by taking iðγ0=ωÞ

αω (i.e., γ ~ γ0/ωα), because of
a diverging ξ. From our Eq. (2) one can see that the assumption
that at p= pc the scaling index in T for γ is zero, i.e., logarith-
mically divergent, suggests that α→ 0 and the challenge is to
obtain this result without ξ→∞.
After momentum integration, a similar frequency dependence

characterizes the singular dynamical interaction between quasi-
particles mediated by the critical collective boson, in ref. 43, where
a complete analysis of the complementary problem of the com-
petition between pairing and non-FL metal at a QCP is reported.
Of course, other, even more mundane, mechanisms might

boost the increase of γ. In cuprates, for instance, pc occurs at or

very near a van Hove singularity, which enhances the density of
states of fermions, thereby increasing the Landau damping γ of
the fluctuations. Also the proximity to charge ordering might
induce the reconstruction of the Fermi surface44, thereby trig-
gering an enhanced damping of the CDFs. In any case, while
all these mechanisms are worth being explored to shape a
microscopic theory of our scenario, it is clear that our phenom-
enological approach shifts the focus from diverging spacial cor-
relations (and vanishing mass of the fluctuations) to a diverging
damping of short-ranged fluctuations, thereby setting a new stage
for the violation of the FL behavior.

Methods
The Boltzmann equation. The results for the in-plane resistivity presented in the
paper are obtained within a Boltzmann equation approach, following the derivation
of ref. 45. We obtain

1
ρ
¼

e2

π3_
2π
d

Z
dϕ

kFðϕÞvFðϕÞcos2ðϕ$ ηÞ
ΓðϕÞ cosðηÞ

; ð4Þ

where kF(ϕ), vF(ϕ), and Γ(ϕ) denote the angular dependence of the Fermi
momentum, Fermi velocity, and scattering rate along the Fermi surface and

η ¼ atan
1
kF

∂kF
∂ϕ

! "
:

The scattering rate Γ(ϕ)≡ Γ0+ ΓΣ(ϕ) includes an elastic scattering rate Γ0, and the
scattering rate due to CDFs, ΓΣðϕÞ % $Im ΣðkFðϕÞ;ω ¼ 0Þ, where Σ(k, ω) is the
electron self-energy [see ref. 27 and its Supplementary Information].

The electron dispersion εk includes nearest-, next-nearest- and next-next-
nearest-neighbor hopping terms generic for cuprates46. The c-axis lattice constant
for Nd-LSCO is taken as d ≈ 11Å.

Calculation of the electron scattering rate. To obtain the electron scattering rate
needed to calculate the electric transport, we carried out a perturbative calculation
of the self-energy corrections of the fermion quasiparticles using the Feynman
diagram of Fig. 4, where the solid line represents a bare quasiparticle, and the wavy
line represents a CDF collective excitation.

The analytic expression for the (retarded) imaginary part is27

Im Σðk;ωÞ ¼ $ g2
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where bðzÞ ¼ ½ez=kBT $ 1($1
is the Bose function, f ðzÞ ¼ ½ez=kBT þ 1($1

is the Fermi
function, g is the coupling between electrons and CDFs and ηq ¼ 4$ 2 cosðqx $
Qc

xÞ $ 2 cosðqy $ Qc
yÞ contains the information about the CDF vector qc. The

parameter !ν should be scaled by 1/(2π)2 (!ν ! !ν=ð4π2Þ) if the momenta are given
in r.l.u. as it is customary, e.g., in RXS experiments (see also below in the
calculation of the specific heat). For the evaluation of ΓΣ % Im ΣðkF; 0Þ we sum
over all 4 equivalent wavevectors (±qc, 0) and (0, ±qc), with qc ≈ 0.3 r.l.u.

Calculation of the specific heat. To define the specific heat contribution from a
collective mode with finite lifetime we start from the free energy of a free boson in
terms of its inverse propagator D$1 and we determine the effect of γ, by calculating
the excess free energy

δF ¼
1
2β

∑
n;q

log
ω2
n

Ω
þ γjωnjþ ωq

! "
$ log

ω2
n

Ω
þ ωq

! "# $
:

Here, the second term represents the free energy of undamped “phonons” with

dispersion Ωωq

% &1=2
, which is subtracted to eliminate the most divergent term in

the Matsubara frequency sum. The corresponding excess of internal energy is given
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Fig. 3 Specific heat. Temperature dependence of the low-temperature
specific heat per unit cell (u.c.) over temperature in Nd–La2−xSrxCuO4

samples with doping p= 0.24 (black solid line and circles) and p= 0.22
(red solid line and diamonds) in linear (a) and semilogarithmic (b) [the
theoretical curves have been rescaled by an overall factor 1/30, while
keeping the relative weight at different doping and temperatures fixed - see
the discussion about this prefactor after Eq. (3) in section “Specific heat in
cuprates”]. c Doping dependence of the low-temperature CV/T in
Nd–La2−xSrxCuO4 samples at different temperatures T= 0.5, 2.0, 10.0 K.
Symbols represent the experimental data taken from ref. 26, where the
related error bars and the discussion of their origin can also be found, while
the lines report our theoretical calculations.

Fig. 4 Electron self-energy. Feynman diagram of the electron self-energy at
the lowest perturbative order. The solid lines represent the electron
propagator, while the wavy line represents the charge density fluctuation
(CDF) propagator, Eq. (1).
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The specific heat is obtained by di↵erentiating the in-
ternal energy with respect to T and dividing by the size
of the system (e.g., the number N of unit cells), yielding
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has been defined.
We consider a three-dimensional unit cell, but we as-

sume that the dispersion in ~q-space is only on the x, y
plane. Introducing a density of states for the variable
⌫̄|~q � ~qc|2,
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where, in order to find an analytical expression, we ap-
proximate the quarter of the Brillouin zone with a circle
centered at each of the four equivalent ~qc, whith radius q̄,
and ⇤ ⇡ ⌫̄q̄2. We then obtain the analytical expression
of the e↵ective spectral density of the CDF
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Since we are considering the limit of low temperatures

it is reasonable to assume both !⌧
q

⌦(m+ ⇤) and

�!⌧m+ ⇤. In this regime, we can approximate ⇢B(!)
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. If one uses r.l.u., then the re-

placement ⌫̄ ! ⌫̄/(4⇡2) must be performed, and one finds
the expression for the low-frequency asymptotic behavior
of ⇢B(!) given in the main text.

The approximation becomes more an more accurate at
lower and lower temperature. From this equation it is
evident that ⇢B(!) is a linear function of �, and so is the
specific heat. Since ⇢B(!) is a constant function of ! in
the regime of our interest, we get the explicit expression
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Our final expression for the ratio CB
V /T is then
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Again, if one uses r.l.u., the substitution ⌫̄ ! ⌫̄/(4⇡2)
must be performed.

Code availability

The theoretical analysis was carried out with FORTRAN
codes to implement various required numerical integra-
tions appearing in the Boltzmann equation, cf. Methods,
and for the evaluation of the specific heat, cf. Eq. (3).
Although the same task could easily by performed with
Mathematica or other standard softwares, the used FOR-
TRAN codes are available from one of the corresponding
authors [M.G.] on reasonable request.
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specific heat and our theory, where this is due to an increasing
damping of the relevant collective modes. Within our approach,
the fermion contribution to the specific heat is finite even when γ
diverges at p= pc.

Conclusion
The above analysis shows that two nontrivial features of the
strange-metal behavior occurring near QCPs can be attributed to,
and accounted for by, the damping parameter γ only. We still lack
a microscopic scheme to determine the doping and temperature
dependence of γ, and, within the scope of the present work,
we rely on the phenomenological expression of Eq. (2). Therefore
also the Tlog ðT0=TÞ behavior of the specific heat at pc is only
phenomenologically captured by our theory. Nevertheless, we
point out that our approach outlines a general paradigmatic
change, shifting the relevance from the divergence of the corre-
lation length ξ to the increase (possibly divergence) of dissipation.
This is what renders our scheme different from the proposal of a
local QCP put forward long ago in ref. 22. In this latter case the
critical behavior of the imaginary part (i.e., damping) of the self-
energy of the critical fluctuations, is sublinear iγ0ω1−α, which
somehow rephrases our condition of an increasing damping at
low energy scales by taking iðγ0=ωÞ

αω (i.e., γ ~ γ0/ωα), because of
a diverging ξ. From our Eq. (2) one can see that the assumption
that at p= pc the scaling index in T for γ is zero, i.e., logarith-
mically divergent, suggests that α→ 0 and the challenge is to
obtain this result without ξ→∞.

After momentum integration, a similar frequency dependence
characterizes the singular dynamical interaction between quasi-
particles mediated by the critical collective boson, in ref. 43, where
a complete analysis of the complementary problem of the com-
petition between pairing and non-FL metal at a QCP is reported.

Of course, other, even more mundane, mechanisms might
boost the increase of γ. In cuprates, for instance, pc occurs at or

very near a van Hove singularity, which enhances the density of
states of fermions, thereby increasing the Landau damping γ of
the fluctuations. Also the proximity to charge ordering might
induce the reconstruction of the Fermi surface44, thereby trig-
gering an enhanced damping of the CDFs. In any case, while
all these mechanisms are worth being explored to shape a
microscopic theory of our scenario, it is clear that our phenom-
enological approach shifts the focus from diverging spacial cor-
relations (and vanishing mass of the fluctuations) to a diverging
damping of short-ranged fluctuations, thereby setting a new stage
for the violation of the FL behavior.

Methods
The Boltzmann equation. The results for the in-plane resistivity presented in the
paper are obtained within a Boltzmann equation approach, following the derivation
of ref. 45. We obtain

1
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kFðϕÞvFðϕÞcos2ðϕ$ ηÞ
ΓðϕÞ cosðηÞ
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where kF(ϕ), vF(ϕ), and Γ(ϕ) denote the angular dependence of the Fermi
momentum, Fermi velocity, and scattering rate along the Fermi surface and
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1
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:

The scattering rate Γ(ϕ)≡ Γ0+ ΓΣ(ϕ) includes an elastic scattering rate Γ0, and the
scattering rate due to CDFs, ΓΣðϕÞ % $Im ΣðkFðϕÞ;ω ¼ 0Þ, where Σ(k, ω) is the
electron self-energy [see ref. 27 and its Supplementary Information].

The electron dispersion εk includes nearest-, next-nearest- and next-next-
nearest-neighbor hopping terms generic for cuprates46. The c-axis lattice constant
for Nd-LSCO is taken as d ≈ 11Å.

Calculation of the electron scattering rate. To obtain the electron scattering rate
needed to calculate the electric transport, we carried out a perturbative calculation
of the self-energy corrections of the fermion quasiparticles using the Feynman
diagram of Fig. 4, where the solid line represents a bare quasiparticle, and the wavy
line represents a CDF collective excitation.

The analytic expression for the (retarded) imaginary part is27
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where bðzÞ ¼ ½ez=kBT $ 1($1
is the Bose function, f ðzÞ ¼ ½ez=kBT þ 1($1

is the Fermi
function, g is the coupling between electrons and CDFs and ηq ¼ 4$ 2 cosðqx $
Qc

xÞ $ 2 cosðqy $ Qc
yÞ contains the information about the CDF vector qc. The

parameter !ν should be scaled by 1/(2π)2 (!ν ! !ν=ð4π2Þ) if the momenta are given
in r.l.u. as it is customary, e.g., in RXS experiments (see also below in the
calculation of the specific heat). For the evaluation of ΓΣ % Im ΣðkF; 0Þ we sum
over all 4 equivalent wavevectors (±qc, 0) and (0, ±qc), with qc ≈ 0.3 r.l.u.

Calculation of the specific heat. To define the specific heat contribution from a
collective mode with finite lifetime we start from the free energy of a free boson in
terms of its inverse propagator D$1 and we determine the effect of γ, by calculating
the excess free energy
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Here, the second term represents the free energy of undamped “phonons” with
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, which is subtracted to eliminate the most divergent term in

the Matsubara frequency sum. The corresponding excess of internal energy is given
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Fig. 3 Specific heat. Temperature dependence of the low-temperature
specific heat per unit cell (u.c.) over temperature in Nd–La2−xSrxCuO4

samples with doping p= 0.24 (black solid line and circles) and p= 0.22
(red solid line and diamonds) in linear (a) and semilogarithmic (b) [the
theoretical curves have been rescaled by an overall factor 1/30, while
keeping the relative weight at different doping and temperatures fixed - see
the discussion about this prefactor after Eq. (3) in section “Specific heat in
cuprates”]. c Doping dependence of the low-temperature CV/T in
Nd–La2−xSrxCuO4 samples at different temperatures T= 0.5, 2.0, 10.0 K.
Symbols represent the experimental data taken from ref. 26, where the
related error bars and the discussion of their origin can also be found, while
the lines report our theoretical calculations.

Fig. 4 Electron self-energy. Feynman diagram of the electron self-energy at
the lowest perturbative order. The solid lines represent the electron
propagator, while the wavy line represents the charge density fluctuation
(CDF) propagator, Eq. (1).
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Nd-La2−xSrxCuO4 and we therefore use similar values: m=
10 meV, !ν ¼ 1:3 eV (r.l.u.)−2, !Ω ¼ 30 meV. These values corre-
spond to a rather short coherence length of a few lattice spacings,
ξ"1 ¼

ffiffiffiffiffiffiffiffiffi
m=!ν

p
# 0:1 r.l.u.). We reiterate here that such a short

coherence length of the CDFs is a crucial feature to obtain a
nearly isotropic scattering over the Fermi surface, so that all
quasiparticles are nearly equally scattered and their FL properties
are uniformly spoiled. As far as the dissipation parameter is
concerned, on the basis of the assumption c) given above, we
adopt here a phenomenological form for the damping parameter

γðp;TÞ ¼ A=log 1þ T0=ΘT

" #
þ Bjp" pcj

$ %"1
; ð2Þ

where ΘT ¼ min ðT;TÞ, and T sets the temperature scale above
which the temperature dependence of γ saturates. Equation (2),
with the parameters A, B, and T0 adjusted to fit resistivity and
specific heat data (see below), corresponds to the idea of a
damping which increases by decreasing the temperature and is
maximal at some doping pc. The scale T is not constrained when
fitting the low-temperature specific heat data, and we can only say
that T > 10 K. Eq. (2) implies a dissipative QCP, with a diverging
γ at T= 0 and p= pc. This translates into the idea that the
strange-metal behavior may eventually extend down to T= 0: as
schematized in Fig. 1(c), an increasingly larger γ extends the
linear resistivity to lower and lower temperatures. By consistently
fitting the resistivity and specific heat data at various dopings (see
below) we determine the parameters T0= 50 K, pc= 0.235,
A= 0.056, B= 0.87 for Nd-La2−xSrxCuO4, and T0= 37 K, pc=
0.232, A= 0.117, B= 2.84 for Eu-La2−xSrxCuO4. We find that
the linear resistivity extends down to a few Kelvins for the
Nd-La2−xSrxCuO4 sample at x= 0.24 (solid black circles and
solid black curve in Fig. 2). The data taken in Eu-La2−xSrxCuO4
with x = 0.24 (empty squares and dashed black curve in Fig. 2)
seem instead to indicate that this sample is slightly away from the
p ~ pc condition and a deviation from linearity occurs at higher
temperatures of a few tens of Kelvins. We point out that, strictly
speaking, the so-called Planckian behavior28,34–39 is a precise way
of achieving a linear dependence of the resistivity on the
temperature, namely the scattering rate is proportional to
the temperature with a prefactor of order one (in units where
the Planck and Boltzmann constants are set equal to 1). In our

theory, the scattering rate is proportional to the square of the
coupling g between electron quasiparticles and fluctuations (see
Eq. (5), in “Methods”), which is adjusted to fit the experimental
resistivity curves, so our strange-metal behavior is not Planckian,
in the sense that does not imply a universal relation between the
scattering rate and the temperature. The very issue of the
occurrence of a Planckian behavior in cuprates and other systems
is controversial and debated40,41.

Specific heat in cuprates. The phenomenological assumption of a
large γ should be validated by investigating its effect on other
observables. In particular, since we claim that the main physical
effect of large damping is to shift the fluctuation spectral weight
to lower energies, it is natural to expect a strong enhancement of
the low-temperature specific heat. This is precisely what has been
recently observed in other overdoped cuprates26. Here we sub-
tract from the observed specific heat the contribution of fermion
quasiparticles. Despite the presence of a van Hove singularity,
disorder, interplane coupling and electron–electron interactions
smoothen this contribution. Thus fermion quasiparticles cannot
account for the observed seemingly divergent specific heat.

We argue instead that an enhancement of the boson
contribution to the specific heat occurs if γ obeys Eq. (2). The
contribution of CDFs to the free energy density is f B ¼
T
2N ∑‘∑qlog D"1ðq;Ω‘Þ

$ %
, where D is the Matsubara propagator

obtained after analytical continuation of Eq. (1), Ωℓ= 2πℓT, with
integer ℓ, and N is the number of unit cells. Hence, we obtain the
contribution of damped CDFs to the internal energy density uB
and to the specific heat (details about the derivation are given in
the “Methods” section)

CB
V ¼

∂uB
∂T

¼
∂
∂T

Z 1

0
dω ω bðωÞ ρBðωÞ

& '
; ð3Þ

where ρB(ω) plays the role of an effective spectral density, whose
full expression is given in the “Methods” section. The low-
temperature asymptotic behavior of the specific heat is captured
by the low-frequency asymptotic value

ρBðωÞ #
4γ
!ν
log 1þ

!ν

4π m

( )
:

Figure 3c shows that the enhancement of γ(T, p) leading to the
observed linear-T behavior in the low-T resistivity, also induces a
peak in the specific heat, due to the increase of low-energy boson
degrees of freedom. Noticeably, the relative weight (height) of CB

V
at the various temperatures is well captured by our approach. In
particular, this feature is mostly ruled by the Bose distribution
function in Eq. (3) and depends only little on the specific
expression of γ(T, p), provided enough spectral density is brought
to frequencies ω≲ T with increasing γ. We also notice that the
logarithmic temperature dependence of γ mirrors in a nearly
logarithmic behavior of CV/T [see Fig. 3 (a, b)]. We point out that,
within our phenomenological approach, it is difficult to estimate
the real number of collective charge degrees of freedom
contributing to the specific heat, and determine its numerical
prefactor. For instance, assuming for the CDFs a correlation
length ξ ≈ 1–2 wavelengths (of order 4–8 lattice units a), one
could consider the CDF modes to live on the sites of a coarse-
grained lattice. In this way, one could easily estimate that in two
dimensions one CDF mode is present on a coarse-grained unit
cell whose area may easily be 20–30 times the area of the original
microscopic unit cell. This is why the CDF contribution to the
specific heat might be rescaled by a seemingly large factor. We
also emphasize the crucial difference between scenarios in which
the increasing mass of the fermion quasiparticles42 (as a result e.g.
of strong correlations and/or localization) leads to a diverging
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Fig. 2 Linear-in-T resistivity. Resistivity calculations for a Nd-
La2−xSrxCuO4 sample with x= 0.24 (black solid line) and for a Eu-
La2−xSrxCuO4 sample with x= 0.24 (black dashed line). The symbols refer
to the experimental data extracted from ref. 26 (the error bars of the data
are smaller than the symbol size): filled circles for Nd-La2−xSrxCuO4 and
empty squares for Eu–La2−xSrxCuO4. For the fitting we used a quasiparticle-
charge fluctuations coupling and the elastic scattering rate due to quenched
disorder g2= 0.045 and Γ0= 13.7 meV for Nd–La2−xSrxCuO4 and
g2= 0.0415 and Γ0= 12.3 meV for Eu–La2−xSrxCuO4 (see Methods—the
Boltzmann equation and calculation of the electron scattering rate).
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The same g~log(1/T) 
accounts for T-linear
resistivity down to low T 
with the same slope
Caprara et al. Commun. Phys. 2022 
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WHY SHOULD g GROW? AND WHY LOGARITHMICALLY ~log(1/T)?

x

EXTRINSIC MECHANISM:

CDF decay in diffusive p-h modes

INTRINSIC MECHANIMS:
CDF interact and tend to form a self-generated 
glass:
Old story: 
J. Schmalian, P. Wolynes et al…. Stripe glasses 2000…
V. Dobrosavljevic, E. Miranda 2005,…Cluster Glass

Overcooled liquid of CDF
Many open issues: interplay between dynamical slowing 
down and (quantum) glass formation, stability of 
configurational entropy,…

WORK IN PROGRESS
L. Ketmaier, MG, J Kurchan
g grows ~(1/T)
Very preliminary

[MG, C. Di Castro, G. Mirarchi, G. Seibold, 
S. Caprara Symmetry 15, 569 (2023)]

In 2D the damping g has a log renormalizaQon

The g grows ~log (1/T)

3

temperature logarithmic growth of the specific heat ra-
tio CV /T , providing a possible realization of the strange
metal scenario described in Ref. 32.

In the standard theory of disordered electron
systems35,36, a di↵usive collective mode is obtained by
a ladder resummation of impurity scattering events [the
dotted lines in Fig. 1 (d)], so that the density-density re-
sponse function takes the form of a di↵usive pole

�(q,!n) = h⇢(q,!n)⇢(�q,!n)i =
N0Dq2

Dq2 + |!n|
, (2)

where q is the wave vector, q ⌘ |q|, D is the di↵usion
constant, and N0 the quasiparticle density of states at
the Fermi level. These density fluctuations keep their
singular di↵usive form as long as Dq2 is larger than T
and smaller than the elastic scattering rate on quenched
impurities 1/⌧ .

It is worth noticing that the di↵usive character of the
low energy electronic modes is by no means a property of
strongly disordered systems: any standard Drude metal
with (even small) amount of impurities has a finite con-
ductance due to impurity scattering and the electrons (or
quasiparticles) at energy smaller than 1/⌧ di↵use rather
than propagate ballistically. Moreover, many strongly
correlated systems, despite their (strange) metallic char-
acter, always display a non negligible elastic impurity
scattering. Cuprates, for instance have impurity scatter-
ing rates of the order of a few tens of meV, such that
T < 1/⌧ essentially over the whole phase diagram.

To describe an equilibrium situation, where an OPF
decays into di↵using p-h pairs, which in turn form back
an OPF, we introduce a phenomenological coupling g
between an OPF (centered at R = 0) and the di↵usive
density fluctuation

Scoupl = gT
X

n

�(R = 0,!n)
X

q

⇢(q,!n). (3)

This simplified model has the advantage of being exactly
solvable, while keeping all the main ingredients to access
the physical scenario of an increasing dissipation of the
OPFs, due to the coupling to other degrees of freedom.
The coupling between OPFs and di↵usive modes dresses
the OPF propagator with the self-energy graphically rep-
resented in Fig. 1 (e),

⌃(!n) = g2N0

Z Qmax

Qmin

d2q

4⇡2

Dq2

Dq2 + |!n|

=
g2N0

4⇡D

Z ⇤max

min (T,⇤max)
d(Dq2)

✓
1� |!n|

Dq2 + |!n|

◆

= �M � |!n|��. (4)

As usual, the upper momentum cuto↵ in the di↵usion
processes is given by the inverse mean free path Qmax =
`�1, which can then be translated into an energy cuto↵
for the di↵usive modes ⇤max ⌘ DQ2

max = 1/⌧ . The
lower cuto↵ is instead provided by the temperature T ,

as long as T < 1/⌧ . The first term in Eq. (4) is a finite
correction to the energy scale M , which is immaterial in
the forthcoming discussion. Expanding to first order in
|!n| the last term in Eq. (4), one obtains a correction to
the dissipation coe�cient �,

�� = � � �0 = A logmax [(⌧T )�1, 1], (5)

where �0 is the damping coe�cient in the absence of
coupling to di↵usive modes and A ⌘ g2N0/(4⇡D) is a
dimensionless e↵ective coupling constant. This result re-
markably shows that the di↵usive channel induces a log-
arithmic increase of the dissipation parameter � when T
decreases. Since within a phenomenological approach it
was previously shown that this leads to the same log-
arithmic divergence of CV /T 32,33, this result provides
a microscopic mechanism accounting for this divergence
without any divergence of the correlation length ⇠. This
naturally raises the issue of the role of the nearby QCP.
In particular, one can notice that Eq. (5) does not ex-
plicitly involve the parameter x tuning the proximity
to the QCP, nor the correlation length characterizing
the OPFs. We therefore need to equip our microscopic
model with phenomenological assumptions to determine
the range in x where the above di↵usive decay chan-
nel becomes e↵ective. First of all, we consider the con-
dition that, when the OPF has a characteristic energy
M/�0 > 1/⌧ , it can only decay in ballistic p-h pairs and
therefore g = 0. Since the short-range fluctuations are
the 2D precursors of the nearby QCP, the correlation
length will increase for x approaching xc and the decay
in di↵usive p-h pairs sets in when the tuning parameter
of criticality x is such that ⌫⇠�2 ⇡ M0(x � xc) < �0/⌧ ,
i.e., x < xDMD ⌘ xc + �0/(⌧M0) (DMD stands for dif-
fusive mode decoupling). This sets the maximum dis-
tance from the QCP above which � ⇡ �0. On the
other hand, our arguments (nearly-independent OPFs,
short correlation length ⇠) fail when one approaches the
QCP, where the physics is ruled by a diverging correla-
tion length ⇠ and the standard Hertz-Millis picture37,38 is
recovered. Therefore, we are led to assume that the di↵u-
sive modes decouple from the OPFs for (xc <)x < xQCR

(QCR stands for quantum critical regime), giving rise to
a negligible g ⇡ 0. Then, Eq. (3) only holds in range
xQCR < x < xDMD.
We point out that the crossover from this regime to

the standard Hertz-Millis criticality is not captured by
our simplified description. It definitely requires the in-
clusion of the self-interaction of OPFs. Furthermore, one
can conceive a scenario where the short-ranged OPFs de-
scribed within our approach coexist with nearly-critical
(à la Hertz-Millis) fluctuations, and the short-ranged
OPFs never become long-ranged. This seems exactly to
be what is observed in cuprates, where resonant inelas-
tic X-ray scattering experiment27 highlighted the coexis-
tence of fluctuating nearly-critical charge density waves,
associated with the 3D ordered phase, and much shorter
ranged CDFs, that can be interpreted as the remnant of
a (missed) 2D criticality28.



A quick personal survey and comparison

Local low energy  
bosons mediate 

scattering

Ancient Romans
CDF local non-critical flucts. near but away from QCP (x small, finite M)
Low energy with an increasing damping (slow relaxation)
g→ ∞, M/ g →0).    Disorder: not important (just a bit?)
Scaling? NO, but almost (matter of fact)

Sachdev & Co.
Yukawa-SYK model(s)

Critical flucts at QCP become local due to 
disordered e-bos coupling.
Low energy because M →0, x diverges
Near QCP also because of boson localization

Varma
Circulating currents → Dissipative XY-model
Topo excitations with z=∞QCP 
effectively local flucts. due to  factorized 
D(w,q)=c(q)DMFL(w)….
Low energy because Mq,w →0, xr,t diverge
MFL like DMFL(w)

Glassy phase (AR) and Stripe 
Glass (Schmalian, Wolynes,…) 
Cluster Glass (Dobrosaljevic,…)
Griffith’s phase (MMS, Vojta,)
Boson localiz. (Sachdev)



Collaborators:  THEORY

The Ancient Romans 
(Sapienza):

S. Caprara, 

C. Di Castro,

G. Mirarchi (->Wuerzburg)

S. BhaNacharyya

CoNbus (BTU):

G. Seibold

RIXS EXPERIMENTS: Politecnico di Milano

G. Ghiringhelli

Y. Y. Peng

F. Lombardi (Chalmers)
and many others
N. B. Brooks, B. Keimer, M. Le Tacon, M. Salluzzo, ...

L. Braicovich

R. Arpaia

 

C. Castellani
framework



CONCLUSIONS

1) In cuprates CDF work well as strong low-energy scatterers 
at T>Tc ⇒ SM from CDF, observed measured modes

No exotic stuff: FL+CDF      

2) At low T if the dissipation parameter g grows large and x stays small 
Allow small energy and isotropic scattering
if g~log(1/T) the SFL mimics well the MFL and it accounts for: 
r~T at low T,   CV,    Seebeck, MFL-like S(w,T), s(w,T)…

3) Slowing down of short range fluctuations 
CDF decay in diffusive particle-hole pairs?
New T=0 glassy phase of CDF over a finite interval of QCP tuning parameter?  

specific heat and our theory, where this is due to an increasing
damping of the relevant collective modes. Within our approach,
the fermion contribution to the specific heat is finite even when γ
diverges at p= pc.

Conclusion
The above analysis shows that two nontrivial features of the
strange-metal behavior occurring near QCPs can be attributed to,
and accounted for by, the damping parameter γ only. We still lack
a microscopic scheme to determine the doping and temperature
dependence of γ, and, within the scope of the present work,
we rely on the phenomenological expression of Eq. (2). Therefore
also the Tlog ðT0=TÞ behavior of the specific heat at pc is only
phenomenologically captured by our theory. Nevertheless, we
point out that our approach outlines a general paradigmatic
change, shifting the relevance from the divergence of the corre-
lation length ξ to the increase (possibly divergence) of dissipation.
This is what renders our scheme different from the proposal of a
local QCP put forward long ago in ref. 22. In this latter case the
critical behavior of the imaginary part (i.e., damping) of the self-
energy of the critical fluctuations, is sublinear iγ0ω1−α, which
somehow rephrases our condition of an increasing damping at
low energy scales by taking iðγ0=ωÞ

αω (i.e., γ ~ γ0/ωα), because of
a diverging ξ. From our Eq. (2) one can see that the assumption
that at p= pc the scaling index in T for γ is zero, i.e., logarith-
mically divergent, suggests that α→ 0 and the challenge is to
obtain this result without ξ→∞.
After momentum integration, a similar frequency dependence

characterizes the singular dynamical interaction between quasi-
particles mediated by the critical collective boson, in ref. 43, where
a complete analysis of the complementary problem of the com-
petition between pairing and non-FL metal at a QCP is reported.
Of course, other, even more mundane, mechanisms might

boost the increase of γ. In cuprates, for instance, pc occurs at or

very near a van Hove singularity, which enhances the density of
states of fermions, thereby increasing the Landau damping γ of
the fluctuations. Also the proximity to charge ordering might
induce the reconstruction of the Fermi surface44, thereby trig-
gering an enhanced damping of the CDFs. In any case, while
all these mechanisms are worth being explored to shape a
microscopic theory of our scenario, it is clear that our phenom-
enological approach shifts the focus from diverging spacial cor-
relations (and vanishing mass of the fluctuations) to a diverging
damping of short-ranged fluctuations, thereby setting a new stage
for the violation of the FL behavior.

Methods
The Boltzmann equation. The results for the in-plane resistivity presented in the
paper are obtained within a Boltzmann equation approach, following the derivation
of ref. 45. We obtain

1
ρ
¼

e2

π3_
2π
d

Z
dϕ

kFðϕÞvFðϕÞcos2ðϕ$ ηÞ
ΓðϕÞ cosðηÞ

; ð4Þ

where kF(ϕ), vF(ϕ), and Γ(ϕ) denote the angular dependence of the Fermi
momentum, Fermi velocity, and scattering rate along the Fermi surface and

η ¼ atan
1
kF

∂kF
∂ϕ

! "
:

The scattering rate Γ(ϕ)≡ Γ0+ ΓΣ(ϕ) includes an elastic scattering rate Γ0, and the
scattering rate due to CDFs, ΓΣðϕÞ % $Im ΣðkFðϕÞ;ω ¼ 0Þ, where Σ(k, ω) is the
electron self-energy [see ref. 27 and its Supplementary Information].

The electron dispersion εk includes nearest-, next-nearest- and next-next-
nearest-neighbor hopping terms generic for cuprates46. The c-axis lattice constant
for Nd-LSCO is taken as d ≈ 11Å.

Calculation of the electron scattering rate. To obtain the electron scattering rate
needed to calculate the electric transport, we carried out a perturbative calculation
of the self-energy corrections of the fermion quasiparticles using the Feynman
diagram of Fig. 4, where the solid line represents a bare quasiparticle, and the wavy
line represents a CDF collective excitation.

The analytic expression for the (retarded) imaginary part is27

Im Σðk;ωÞ ¼ $ g2
Z

d2q
ð2πÞ2

´
ðω$ εk$qÞ½bðεk$qÞ þ f ðεk$q $ ωÞ(

½ω0 þ !νηq $ ðω$ εk$qÞ
2=Ω(2 þ ðω$ εk$qÞ

2
;

ð5Þ

where bðzÞ ¼ ½ez=kBT $ 1($1
is the Bose function, f ðzÞ ¼ ½ez=kBT þ 1($1

is the Fermi
function, g is the coupling between electrons and CDFs and ηq ¼ 4$ 2 cosðqx $
Qc

xÞ $ 2 cosðqy $ Qc
yÞ contains the information about the CDF vector qc. The

parameter !ν should be scaled by 1/(2π)2 (!ν ! !ν=ð4π2Þ) if the momenta are given
in r.l.u. as it is customary, e.g., in RXS experiments (see also below in the
calculation of the specific heat). For the evaluation of ΓΣ % Im ΣðkF; 0Þ we sum
over all 4 equivalent wavevectors (±qc, 0) and (0, ±qc), with qc ≈ 0.3 r.l.u.

Calculation of the specific heat. To define the specific heat contribution from a
collective mode with finite lifetime we start from the free energy of a free boson in
terms of its inverse propagator D$1 and we determine the effect of γ, by calculating
the excess free energy

δF ¼
1
2β

∑
n;q

log
ω2
n

Ω
þ γjωnjþ ωq

! "
$ log

ω2
n

Ω
þ ωq

! "# $
:

Here, the second term represents the free energy of undamped “phonons” with

dispersion Ωωq

% &1=2
, which is subtracted to eliminate the most divergent term in

the Matsubara frequency sum. The corresponding excess of internal energy is given
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Fig. 3 Specific heat. Temperature dependence of the low-temperature
specific heat per unit cell (u.c.) over temperature in Nd–La2−xSrxCuO4

samples with doping p= 0.24 (black solid line and circles) and p= 0.22
(red solid line and diamonds) in linear (a) and semilogarithmic (b) [the
theoretical curves have been rescaled by an overall factor 1/30, while
keeping the relative weight at different doping and temperatures fixed - see
the discussion about this prefactor after Eq. (3) in section “Specific heat in
cuprates”]. c Doping dependence of the low-temperature CV/T in
Nd–La2−xSrxCuO4 samples at different temperatures T= 0.5, 2.0, 10.0 K.
Symbols represent the experimental data taken from ref. 26, where the
related error bars and the discussion of their origin can also be found, while
the lines report our theoretical calculations.

Fig. 4 Electron self-energy. Feynman diagram of the electron self-energy at
the lowest perturbative order. The solid lines represent the electron
propagator, while the wavy line represents the charge density fluctuation
(CDF) propagator, Eq. (1).
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Nd-La2−xSrxCuO4 and we therefore use similar values: m=
10 meV, !ν ¼ 1:3 eV (r.l.u.)−2, !Ω ¼ 30 meV. These values corre-
spond to a rather short coherence length of a few lattice spacings,
ξ"1 ¼

ffiffiffiffiffiffiffiffiffi
m=!ν

p
# 0:1 r.l.u.). We reiterate here that such a short

coherence length of the CDFs is a crucial feature to obtain a
nearly isotropic scattering over the Fermi surface, so that all
quasiparticles are nearly equally scattered and their FL properties
are uniformly spoiled. As far as the dissipation parameter is
concerned, on the basis of the assumption c) given above, we
adopt here a phenomenological form for the damping parameter

γðp;TÞ ¼ A=log 1þ T0=ΘT

" #
þ Bjp" pcj

$ %"1
; ð2Þ

where ΘT ¼ min ðT;TÞ, and T sets the temperature scale above
which the temperature dependence of γ saturates. Equation (2),
with the parameters A, B, and T0 adjusted to fit resistivity and
specific heat data (see below), corresponds to the idea of a
damping which increases by decreasing the temperature and is
maximal at some doping pc. The scale T is not constrained when
fitting the low-temperature specific heat data, and we can only say
that T > 10 K. Eq. (2) implies a dissipative QCP, with a diverging
γ at T= 0 and p= pc. This translates into the idea that the
strange-metal behavior may eventually extend down to T= 0: as
schematized in Fig. 1(c), an increasingly larger γ extends the
linear resistivity to lower and lower temperatures. By consistently
fitting the resistivity and specific heat data at various dopings (see
below) we determine the parameters T0= 50 K, pc= 0.235,
A= 0.056, B= 0.87 for Nd-La2−xSrxCuO4, and T0= 37 K, pc=
0.232, A= 0.117, B= 2.84 for Eu-La2−xSrxCuO4. We find that
the linear resistivity extends down to a few Kelvins for the
Nd-La2−xSrxCuO4 sample at x= 0.24 (solid black circles and
solid black curve in Fig. 2). The data taken in Eu-La2−xSrxCuO4
with x = 0.24 (empty squares and dashed black curve in Fig. 2)
seem instead to indicate that this sample is slightly away from the
p ~ pc condition and a deviation from linearity occurs at higher
temperatures of a few tens of Kelvins. We point out that, strictly
speaking, the so-called Planckian behavior28,34–39 is a precise way
of achieving a linear dependence of the resistivity on the
temperature, namely the scattering rate is proportional to
the temperature with a prefactor of order one (in units where
the Planck and Boltzmann constants are set equal to 1). In our

theory, the scattering rate is proportional to the square of the
coupling g between electron quasiparticles and fluctuations (see
Eq. (5), in “Methods”), which is adjusted to fit the experimental
resistivity curves, so our strange-metal behavior is not Planckian,
in the sense that does not imply a universal relation between the
scattering rate and the temperature. The very issue of the
occurrence of a Planckian behavior in cuprates and other systems
is controversial and debated40,41.

Specific heat in cuprates. The phenomenological assumption of a
large γ should be validated by investigating its effect on other
observables. In particular, since we claim that the main physical
effect of large damping is to shift the fluctuation spectral weight
to lower energies, it is natural to expect a strong enhancement of
the low-temperature specific heat. This is precisely what has been
recently observed in other overdoped cuprates26. Here we sub-
tract from the observed specific heat the contribution of fermion
quasiparticles. Despite the presence of a van Hove singularity,
disorder, interplane coupling and electron–electron interactions
smoothen this contribution. Thus fermion quasiparticles cannot
account for the observed seemingly divergent specific heat.
We argue instead that an enhancement of the boson

contribution to the specific heat occurs if γ obeys Eq. (2). The
contribution of CDFs to the free energy density is f B ¼
T
2N ∑‘∑qlog D"1ðq;Ω‘Þ

$ %
, where D is the Matsubara propagator

obtained after analytical continuation of Eq. (1), Ωℓ= 2πℓT, with
integer ℓ, and N is the number of unit cells. Hence, we obtain the
contribution of damped CDFs to the internal energy density uB
and to the specific heat (details about the derivation are given in
the “Methods” section)

CB
V ¼

∂uB
∂T

¼
∂
∂T

Z 1

0
dω ω bðωÞ ρBðωÞ

& '
; ð3Þ

where ρB(ω) plays the role of an effective spectral density, whose
full expression is given in the “Methods” section. The low-
temperature asymptotic behavior of the specific heat is captured
by the low-frequency asymptotic value

ρBðωÞ #
4γ
!ν
log 1þ

!ν

4π m

( )
:

Figure 3c shows that the enhancement of γ(T, p) leading to the
observed linear-T behavior in the low-T resistivity, also induces a
peak in the specific heat, due to the increase of low-energy boson
degrees of freedom. Noticeably, the relative weight (height) of CB

V
at the various temperatures is well captured by our approach. In
particular, this feature is mostly ruled by the Bose distribution
function in Eq. (3) and depends only little on the specific
expression of γ(T, p), provided enough spectral density is brought
to frequencies ω≲ T with increasing γ. We also notice that the
logarithmic temperature dependence of γ mirrors in a nearly
logarithmic behavior of CV/T [see Fig. 3 (a, b)]. We point out that,
within our phenomenological approach, it is difficult to estimate
the real number of collective charge degrees of freedom
contributing to the specific heat, and determine its numerical
prefactor. For instance, assuming for the CDFs a correlation
length ξ ≈ 1–2 wavelengths (of order 4–8 lattice units a), one
could consider the CDF modes to live on the sites of a coarse-
grained lattice. In this way, one could easily estimate that in two
dimensions one CDF mode is present on a coarse-grained unit
cell whose area may easily be 20–30 times the area of the original
microscopic unit cell. This is why the CDF contribution to the
specific heat might be rescaled by a seemingly large factor. We
also emphasize the crucial difference between scenarios in which
the increasing mass of the fermion quasiparticles42 (as a result e.g.
of strong correlations and/or localization) leads to a diverging

0 20 40 60 80 100
T [K]

0

10

20

30

40

50

60

70

80

 ρ
 [µ

Ω 
cm

]

Fig. 2 Linear-in-T resistivity. Resistivity calculations for a Nd-
La2−xSrxCuO4 sample with x= 0.24 (black solid line) and for a Eu-
La2−xSrxCuO4 sample with x= 0.24 (black dashed line). The symbols refer
to the experimental data extracted from ref. 26 (the error bars of the data
are smaller than the symbol size): filled circles for Nd-La2−xSrxCuO4 and
empty squares for Eu–La2−xSrxCuO4. For the fitting we used a quasiparticle-
charge fluctuations coupling and the elastic scattering rate due to quenched
disorder g2= 0.045 and Γ0= 13.7 meV for Nd–La2−xSrxCuO4 and
g2= 0.0415 and Γ0= 12.3 meV for Eu–La2−xSrxCuO4 (see Methods—the
Boltzmann equation and calculation of the electron scattering rate).
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No exotic stuff: FL+ slower and slower CDF….
But maybe a new local criticality with g~t~xt?



CONCLUSIONS

1) In cuprates CDF work well as strong low-energy scaZerers 
at T>Tc ⇒ SM from CDF, observed measured modes

No exoLc stuff: FL+CDF      

2) At low T if the dissipacon parameter g grows large and x stays small 
Allow small energy and isotropic scaNering
if g~log(1/T) the SFL mimics well the MFL and it accounts for: 
r~T at low T,   CV,    Seebeck, MFL-like S(w,T), s(w,T)…

3) Slowing down of short range fluctuacons 
CDF decay in diffusive parNcle-hole pairs?
New T=0 glassy phase of CDF over a finite interval of QCP tuning parameter?  

CDF

specific heat and our theory, where this is due to an increasing
damping of the relevant collective modes. Within our approach,
the fermion contribution to the specific heat is finite even when γ
diverges at p= pc.

Conclusion
The above analysis shows that two nontrivial features of the
strange-metal behavior occurring near QCPs can be attributed to,
and accounted for by, the damping parameter γ only. We still lack
a microscopic scheme to determine the doping and temperature
dependence of γ, and, within the scope of the present work,
we rely on the phenomenological expression of Eq. (2). Therefore
also the Tlog ðT0=TÞ behavior of the specific heat at pc is only
phenomenologically captured by our theory. Nevertheless, we
point out that our approach outlines a general paradigmatic
change, shifting the relevance from the divergence of the corre-
lation length ξ to the increase (possibly divergence) of dissipation.
This is what renders our scheme different from the proposal of a
local QCP put forward long ago in ref. 22. In this latter case the
critical behavior of the imaginary part (i.e., damping) of the self-
energy of the critical fluctuations, is sublinear iγ0ω1−α, which
somehow rephrases our condition of an increasing damping at
low energy scales by taking iðγ0=ωÞ

αω (i.e., γ ~ γ0/ωα), because of
a diverging ξ. From our Eq. (2) one can see that the assumption
that at p= pc the scaling index in T for γ is zero, i.e., logarith-
mically divergent, suggests that α→ 0 and the challenge is to
obtain this result without ξ→∞.
After momentum integration, a similar frequency dependence

characterizes the singular dynamical interaction between quasi-
particles mediated by the critical collective boson, in ref. 43, where
a complete analysis of the complementary problem of the com-
petition between pairing and non-FL metal at a QCP is reported.
Of course, other, even more mundane, mechanisms might

boost the increase of γ. In cuprates, for instance, pc occurs at or

very near a van Hove singularity, which enhances the density of
states of fermions, thereby increasing the Landau damping γ of
the fluctuations. Also the proximity to charge ordering might
induce the reconstruction of the Fermi surface44, thereby trig-
gering an enhanced damping of the CDFs. In any case, while
all these mechanisms are worth being explored to shape a
microscopic theory of our scenario, it is clear that our phenom-
enological approach shifts the focus from diverging spacial cor-
relations (and vanishing mass of the fluctuations) to a diverging
damping of short-ranged fluctuations, thereby setting a new stage
for the violation of the FL behavior.

Methods
The Boltzmann equation. The results for the in-plane resistivity presented in the
paper are obtained within a Boltzmann equation approach, following the derivation
of ref. 45. We obtain

1
ρ
¼

e2

π3_
2π
d

Z
dϕ

kFðϕÞvFðϕÞcos2ðϕ$ ηÞ
ΓðϕÞ cosðηÞ

; ð4Þ

where kF(ϕ), vF(ϕ), and Γ(ϕ) denote the angular dependence of the Fermi
momentum, Fermi velocity, and scattering rate along the Fermi surface and

η ¼ atan
1
kF

∂kF
∂ϕ

! "
:

The scattering rate Γ(ϕ)≡ Γ0+ ΓΣ(ϕ) includes an elastic scattering rate Γ0, and the
scattering rate due to CDFs, ΓΣðϕÞ % $Im ΣðkFðϕÞ;ω ¼ 0Þ, where Σ(k, ω) is the
electron self-energy [see ref. 27 and its Supplementary Information].

The electron dispersion εk includes nearest-, next-nearest- and next-next-
nearest-neighbor hopping terms generic for cuprates46. The c-axis lattice constant
for Nd-LSCO is taken as d ≈ 11Å.

Calculation of the electron scattering rate. To obtain the electron scattering rate
needed to calculate the electric transport, we carried out a perturbative calculation
of the self-energy corrections of the fermion quasiparticles using the Feynman
diagram of Fig. 4, where the solid line represents a bare quasiparticle, and the wavy
line represents a CDF collective excitation.

The analytic expression for the (retarded) imaginary part is27

Im Σðk;ωÞ ¼ $ g2
Z

d2q
ð2πÞ2

´
ðω$ εk$qÞ½bðεk$qÞ þ f ðεk$q $ ωÞ(

½ω0 þ !νηq $ ðω$ εk$qÞ
2=Ω(2 þ ðω$ εk$qÞ

2
;

ð5Þ

where bðzÞ ¼ ½ez=kBT $ 1($1
is the Bose function, f ðzÞ ¼ ½ez=kBT þ 1($1

is the Fermi
function, g is the coupling between electrons and CDFs and ηq ¼ 4$ 2 cosðqx $
Qc

xÞ $ 2 cosðqy $ Qc
yÞ contains the information about the CDF vector qc. The

parameter !ν should be scaled by 1/(2π)2 (!ν ! !ν=ð4π2Þ) if the momenta are given
in r.l.u. as it is customary, e.g., in RXS experiments (see also below in the
calculation of the specific heat). For the evaluation of ΓΣ % Im ΣðkF; 0Þ we sum
over all 4 equivalent wavevectors (±qc, 0) and (0, ±qc), with qc ≈ 0.3 r.l.u.

Calculation of the specific heat. To define the specific heat contribution from a
collective mode with finite lifetime we start from the free energy of a free boson in
terms of its inverse propagator D$1 and we determine the effect of γ, by calculating
the excess free energy

δF ¼
1
2β

∑
n;q

log
ω2
n

Ω
þ γjωnjþ ωq

! "
$ log

ω2
n

Ω
þ ωq

! "# $
:

Here, the second term represents the free energy of undamped “phonons” with

dispersion Ωωq

% &1=2
, which is subtracted to eliminate the most divergent term in

the Matsubara frequency sum. The corresponding excess of internal energy is given
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Fig. 3 Specific heat. Temperature dependence of the low-temperature
specific heat per unit cell (u.c.) over temperature in Nd–La2−xSrxCuO4

samples with doping p= 0.24 (black solid line and circles) and p= 0.22
(red solid line and diamonds) in linear (a) and semilogarithmic (b) [the
theoretical curves have been rescaled by an overall factor 1/30, while
keeping the relative weight at different doping and temperatures fixed - see
the discussion about this prefactor after Eq. (3) in section “Specific heat in
cuprates”]. c Doping dependence of the low-temperature CV/T in
Nd–La2−xSrxCuO4 samples at different temperatures T= 0.5, 2.0, 10.0 K.
Symbols represent the experimental data taken from ref. 26, where the
related error bars and the discussion of their origin can also be found, while
the lines report our theoretical calculations.

Fig. 4 Electron self-energy. Feynman diagram of the electron self-energy at
the lowest perturbative order. The solid lines represent the electron
propagator, while the wavy line represents the charge density fluctuation
(CDF) propagator, Eq. (1).
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Nd-La2−xSrxCuO4 and we therefore use similar values: m=
10 meV, !ν ¼ 1:3 eV (r.l.u.)−2, !Ω ¼ 30 meV. These values corre-
spond to a rather short coherence length of a few lattice spacings,
ξ"1 ¼

ffiffiffiffiffiffiffiffiffi
m=!ν

p
# 0:1 r.l.u.). We reiterate here that such a short

coherence length of the CDFs is a crucial feature to obtain a
nearly isotropic scattering over the Fermi surface, so that all
quasiparticles are nearly equally scattered and their FL properties
are uniformly spoiled. As far as the dissipation parameter is
concerned, on the basis of the assumption c) given above, we
adopt here a phenomenological form for the damping parameter

γðp;TÞ ¼ A=log 1þ T0=ΘT

" #
þ Bjp" pcj

$ %"1
; ð2Þ

where ΘT ¼ min ðT;TÞ, and T sets the temperature scale above
which the temperature dependence of γ saturates. Equation (2),
with the parameters A, B, and T0 adjusted to fit resistivity and
specific heat data (see below), corresponds to the idea of a
damping which increases by decreasing the temperature and is
maximal at some doping pc. The scale T is not constrained when
fitting the low-temperature specific heat data, and we can only say
that T > 10 K. Eq. (2) implies a dissipative QCP, with a diverging
γ at T= 0 and p= pc. This translates into the idea that the
strange-metal behavior may eventually extend down to T= 0: as
schematized in Fig. 1(c), an increasingly larger γ extends the
linear resistivity to lower and lower temperatures. By consistently
fitting the resistivity and specific heat data at various dopings (see
below) we determine the parameters T0= 50 K, pc= 0.235,
A= 0.056, B= 0.87 for Nd-La2−xSrxCuO4, and T0= 37 K, pc=
0.232, A= 0.117, B= 2.84 for Eu-La2−xSrxCuO4. We find that
the linear resistivity extends down to a few Kelvins for the
Nd-La2−xSrxCuO4 sample at x= 0.24 (solid black circles and
solid black curve in Fig. 2). The data taken in Eu-La2−xSrxCuO4
with x = 0.24 (empty squares and dashed black curve in Fig. 2)
seem instead to indicate that this sample is slightly away from the
p ~ pc condition and a deviation from linearity occurs at higher
temperatures of a few tens of Kelvins. We point out that, strictly
speaking, the so-called Planckian behavior28,34–39 is a precise way
of achieving a linear dependence of the resistivity on the
temperature, namely the scattering rate is proportional to
the temperature with a prefactor of order one (in units where
the Planck and Boltzmann constants are set equal to 1). In our

theory, the scattering rate is proportional to the square of the
coupling g between electron quasiparticles and fluctuations (see
Eq. (5), in “Methods”), which is adjusted to fit the experimental
resistivity curves, so our strange-metal behavior is not Planckian,
in the sense that does not imply a universal relation between the
scattering rate and the temperature. The very issue of the
occurrence of a Planckian behavior in cuprates and other systems
is controversial and debated40,41.

Specific heat in cuprates. The phenomenological assumption of a
large γ should be validated by investigating its effect on other
observables. In particular, since we claim that the main physical
effect of large damping is to shift the fluctuation spectral weight
to lower energies, it is natural to expect a strong enhancement of
the low-temperature specific heat. This is precisely what has been
recently observed in other overdoped cuprates26. Here we sub-
tract from the observed specific heat the contribution of fermion
quasiparticles. Despite the presence of a van Hove singularity,
disorder, interplane coupling and electron–electron interactions
smoothen this contribution. Thus fermion quasiparticles cannot
account for the observed seemingly divergent specific heat.
We argue instead that an enhancement of the boson

contribution to the specific heat occurs if γ obeys Eq. (2). The
contribution of CDFs to the free energy density is f B ¼
T
2N ∑‘∑qlog D"1ðq;Ω‘Þ

$ %
, where D is the Matsubara propagator

obtained after analytical continuation of Eq. (1), Ωℓ= 2πℓT, with
integer ℓ, and N is the number of unit cells. Hence, we obtain the
contribution of damped CDFs to the internal energy density uB
and to the specific heat (details about the derivation are given in
the “Methods” section)

CB
V ¼

∂uB
∂T

¼
∂
∂T

Z 1

0
dω ω bðωÞ ρBðωÞ

& '
; ð3Þ

where ρB(ω) plays the role of an effective spectral density, whose
full expression is given in the “Methods” section. The low-
temperature asymptotic behavior of the specific heat is captured
by the low-frequency asymptotic value

ρBðωÞ #
4γ
!ν
log 1þ

!ν

4π m

( )
:

Figure 3c shows that the enhancement of γ(T, p) leading to the
observed linear-T behavior in the low-T resistivity, also induces a
peak in the specific heat, due to the increase of low-energy boson
degrees of freedom. Noticeably, the relative weight (height) of CB

V
at the various temperatures is well captured by our approach. In
particular, this feature is mostly ruled by the Bose distribution
function in Eq. (3) and depends only little on the specific
expression of γ(T, p), provided enough spectral density is brought
to frequencies ω≲ T with increasing γ. We also notice that the
logarithmic temperature dependence of γ mirrors in a nearly
logarithmic behavior of CV/T [see Fig. 3 (a, b)]. We point out that,
within our phenomenological approach, it is difficult to estimate
the real number of collective charge degrees of freedom
contributing to the specific heat, and determine its numerical
prefactor. For instance, assuming for the CDFs a correlation
length ξ ≈ 1–2 wavelengths (of order 4–8 lattice units a), one
could consider the CDF modes to live on the sites of a coarse-
grained lattice. In this way, one could easily estimate that in two
dimensions one CDF mode is present on a coarse-grained unit
cell whose area may easily be 20–30 times the area of the original
microscopic unit cell. This is why the CDF contribution to the
specific heat might be rescaled by a seemingly large factor. We
also emphasize the crucial difference between scenarios in which
the increasing mass of the fermion quasiparticles42 (as a result e.g.
of strong correlations and/or localization) leads to a diverging

0 20 40 60 80 100
T [K]

0

10

20

30

40

50

60

70

80

 ρ
 [µ

Ω 
cm

]

Fig. 2 Linear-in-T resistivity. Resistivity calculations for a Nd-
La2−xSrxCuO4 sample with x= 0.24 (black solid line) and for a Eu-
La2−xSrxCuO4 sample with x= 0.24 (black dashed line). The symbols refer
to the experimental data extracted from ref. 26 (the error bars of the data
are smaller than the symbol size): filled circles for Nd-La2−xSrxCuO4 and
empty squares for Eu–La2−xSrxCuO4. For the fitting we used a quasiparticle-
charge fluctuations coupling and the elastic scattering rate due to quenched
disorder g2= 0.045 and Γ0= 13.7 meV for Nd–La2−xSrxCuO4 and
g2= 0.0415 and Γ0= 12.3 meV for Eu–La2−xSrxCuO4 (see Methods—the
Boltzmann equation and calculation of the electron scattering rate).
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If you hear hooves, think ‘horse’, not ‘ze
bra’.

No exotic stuff: FL+ slower and slower CDF…..      
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(4)
This is a kind of weighted density of states, which takes

also the spin degrees of freedom into account. Of course,
within this context ⇠ is just the independent variable of
Ñ(⇠), not to be confused with the correlation length, for
which we have used the very same symbol. By using
function (4) we can express �11 as follows:
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The integral in d⇠ can be calculated by means of Allen
approximation26, leading to the following result:

�11 = Ñ(0)
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@!

◆
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It is worth noting that this expression is essentially a
generalizazion of Drude formula for electrical conductiv-
ity. In fact, within our formalism the electrical conduc-
tivity � is e2�11, the factor Ñ(0) in expression (5) is the
ratio between the electron density and the mass, while
the integral in d! represents the mean scattering time.

III. ELECTRONIC CONTRIBUTION TO THE
SEEBECK COEFFICIENT

For the calculation of the electronic component of �12,
which we denoted with �12

el , we have to consider a dia-
gram fully analogous to (3), but with an electron heat
current in place of a particle current:

jQ,el
k

k, i(!n + ⌦`)

k, i!n

jelk (6)

The question of the general definition of a microscopic
heat current is thorough and widely debated, however it
is generally agreed that any definition of such a current
is based on energy conservation arguments27–30. This
approach works well for conservative systems, but it may
fail in the presence of dissipation. For the case of electron
heat current we do not have this kind of problem, in
this case the choice for heat current jQ,el

k simply reduces

to ⇠kvk,x31,32. The calculation of the coefficient �12
el is

performed in a completely analogous way to that done
for the coefficient �11, the result we get is the following:
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= Ñ(0)

ˆ +1

�1

! � Re⌃(!)
2|Im⌃(!)|

✓
�@f(!)

@!

◆
d!

(7)
Knowing the expressions for �11 and �12

el , it is possible
to use equation (1) in order to obtain the contribution to
the Seebeck coefficient given by the (dressed) electronic
quasiparticles alone in the low temperature limit:
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eT
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Linearity in temperature is given by the fact that,
in the presence of a constant scattering term in the
self-energy, �11 tends to a constant value in the low
temperature limit while �12

el goes to zero as T 2. Notice
that our expression for Sel is formally identical to the
so-called Mott formula for thermopower33, but in our
case the quantity in brackets takes the place of the loga-
rithmic derivative of the energy-dependent conductivity.
The fundamental difference between our expression and
Mott formula is right here: Mott formula takes into
account both electronic structure effects (encoded in a
similar way to how we did with the Ñ(⇠) function) and
interaction effects (often described within a Boltzmann-
like formalism) through energy-dependent conductivity,
while our equation only takes into account the effects of
interactions. The reason why our description does not
take into account electronic structure effects is that we
have applied the Allen approximation both in terms �11

and �12
el , so that all structure effects vanish perfectly.

Finally, it should be stressed that eq. (8) is valid
only if the self-energy includes an impurity scattering
term. If the self-energy is that of an ideal Fermi-liquid
(with no impurity scattering), the expression of Sel

would be formally different, but would still have a linear
trend in temperature. The reason is that the asymptotic
trends of �11 and �12

el at low temperature wolud be
�11 ⇠T�2 and �12

el ⇠ const., so the trend of their ratio
would remain unchanged.

IV. CDF DRAG CONTRIBUTION TO THE
SEEBECK COEFFICIENT

Mott formula predicts a Seebeck coefficient which
is linear in temperature, relatively small (less than
1µVK�1 at T = 10 K) and negative. These are not the
features that are usually observed in many standard met-
als. The main reason of this discrepancy is that Mott for-
mula is valid only under the Bloch conditions, i.e. when

About the computation of the CDF drag effect
on thermopower (8th September 2022)
The diagram
Our goal is to compute the thermoelectric power due to CDF drag effect within
Kubo formalism. The corresponding transport coefficient is given by the correla-
tion function between the CDF heat current jCDF

kin,kout
and the fermionic number

current jNkin,kout
. For the moment we do not worry about the exact expression of

these currents, the only important thing is that they are odd functions for the
change of sign of the arguments (kin, kout) ! (�kin,�kout) and even for their
switch (kin, kout) ! (kout, kin). Although these currents are vector quantities,
henceforth we will use jCDF

kin,kout
and jNkin,kout

to indicate only the x component
of the currents, taking advantage of the fact that the current-current response
matrix is proportional to the identity matrix in presence of tetragonal symmetry.

The simplest diagram we can consider for this kind of response function is
the following:

jCDF
p+ q

2 ,p�
q
2

p+ q
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2 ,k�
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(1)

We denote by �(q, i⌦`) the response function associated with this diagram. Our
goal is to calculate the response function in the static limit, so first we will do
the analytic continuation in frequency domain i⌦` !! + i0+, then we will fix
q = 0 and finally we will do the limit of Im�I(q,! + i0+)/! of ! as !!0.

An important property of �(q, i⌦`) is that it is an even function of q. In
fact, since k and p are just sum variables, the change q!� q can be offset by
the changes k!� k and p!� p. The overall sign does not change, since the
propagators are even functions of momentum, while the vertices are both odd.

Response function in Matsubara domain
Before making the expression for the response function explicit, we exhibit two
important identities valid for Matsubara sums, respectively for the even and odd
frequencies:
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The integral in d⇠ can be calculated by means of Allen
approximation26, leading to the following result:
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It is worth noting that this expression is essentially a
generalizazion of Drude formula for electrical conductiv-
ity. In fact, within our formalism the electrical conduc-
tivity � is e2�11, the factor Ñ(0) in expression (5) is the
ratio between the electron density and the mass, while
the integral in d! represents the mean scattering time.

III. ELECTRONIC CONTRIBUTION TO THE
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For the calculation of the electronic component of �12,
which we denoted with �12

el , we have to consider a dia-
gram fully analogous to (3), but with an electron heat
current in place of a particle current:
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The question of the general definition of a microscopic
heat current is thorough and widely debated, however it
is generally agreed that any definition of such a current
is based on energy conservation arguments27–30. This
approach works well for conservative systems, but it may
fail in the presence of dissipation. For the case of electron
heat current we do not have this kind of problem, in
this case the choice for heat current jQ,el
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Knowing the expressions for �11 and �12

el , it is possible
to use equation (1) in order to obtain the contribution to
the Seebeck coefficient given by the (dressed) electronic
quasiparticles alone in the low temperature limit:
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Linearity in temperature is given by the fact that,
in the presence of a constant scattering term in the
self-energy, �11 tends to a constant value in the low
temperature limit while �12

el goes to zero as T 2. Notice
that our expression for Sel is formally identical to the
so-called Mott formula for thermopower33, but in our
case the quantity in brackets takes the place of the loga-
rithmic derivative of the energy-dependent conductivity.
The fundamental difference between our expression and
Mott formula is right here: Mott formula takes into
account both electronic structure effects (encoded in a
similar way to how we did with the Ñ(⇠) function) and
interaction effects (often described within a Boltzmann-
like formalism) through energy-dependent conductivity,
while our equation only takes into account the effects of
interactions. The reason why our description does not
take into account electronic structure effects is that we
have applied the Allen approximation both in terms �11

and �12
el , so that all structure effects vanish perfectly.

Finally, it should be stressed that eq. (8) is valid
only if the self-energy includes an impurity scattering
term. If the self-energy is that of an ideal Fermi-liquid
(with no impurity scattering), the expression of Sel

would be formally different, but would still have a linear
trend in temperature. The reason is that the asymptotic
trends of �11 and �12

el at low temperature wolud be
�11 ⇠T�2 and �12

el ⇠ const., so the trend of their ratio
would remain unchanged.

IV. CDF DRAG CONTRIBUTION TO THE
SEEBECK COEFFICIENT

Mott formula predicts a Seebeck coefficient which
is linear in temperature, relatively small (less than
1µVK�1 at T = 10 K) and negative. These are not the
features that are usually observed in many standard met-
als. The main reason of this discrepancy is that Mott for-
mula is valid only under the Bloch conditions, i.e. when

5

In Appendix C, we will give arguments concerning
the asymptotic behavior of �12

drag at low temperature.
Numerically, it is possible to show that, in a reasonable
range of parameters (both fermionic and bosonic) and
for � large enough, �12

drag is linear in � and quadratic
in T in the low temperature limit. Furthermore, taking
into account the evident linearity of �12

drag in g2, we have
the following behavior:

�12
drag / g2T 2�

It should be noted that the sign of �drag, unlike the
electronic case, is not well defined and crucially depends
on the system parameters. Since our goal is to reproduce
a positive Seebeck coefficient, we need to choose the pa-
rameters of our theory in order to have �12

drag < 0. For the
units we’re using, �12

drag must have the dimension of an
energy, so the dimension of the proportionality constant
between �12

drag and g2T 2� must be that of k2B divided by
a cubic energy. By including the requirement that this
constant must be negative, we can formally write:

�12
drag ' � g2�

�2"30
(11)

This relation defines the energy scale "0. The CDF
drag contribution to the Seebeck coefficient can be ex-
pressed as follows:

Sdrag := � 1

eT

�12
drag

�11
'T

k2B
e

g2�

"30�
11

V. RESULTS AND CONCLUSION

For the band dispersion we have chosen to use a tight-
binding model up to third nearest neighbor interaction.
In particular, the hopping parameters we used are:

t = 300meV t0 = �50meV t00 = 2meV

and we consider a hole doping level of 24%. These
parameters are suitable for the description of the
La1.6–xNd0.4SrxCuO4 compound in the doping regime of
our interest. For the bosonic part, the values we use for
the description of the CDF are:

m = 15meV ⌫̄ = 1.3 eV/(r.l.u.)2 ⌦ = 30meV

while the values of g and ⌃0 are fixed, respectively, to:

g = 150meV ⌃0 = 15meV

The only parameters that we have not fixed yet are the
magnitude of qc (which we will simply denote with qc)
and the value of �. The sign of �12

drag, as well as the valid-
ity of relation (11), crucially depends on qc through jCDF

q .
Our numerical analysis shows that, for the approximation
(11) to be valid, it is necessary that qc does not exceed
the value of approximately 0.15, which is significantly
smaller than the experimentally known value14 (explain).
For qc = 0.11 our approximation is valid within a regime
of � extended from values of a few units to that of a few
tens. As we shall see, this is exactly the regime of values
for � which allows us to reproduce the experimental data
of S/T for La1.6–xNd0.4SrxCuO4. The value we found for
"0, in this case, is approximately 43meV, which is com-
parable with the other energy scales of the system. The
functional expression for � which allows us to fit Seebeck
coefficient data6 is very similar to the one exhibited in
ref.15, namely:

�(T ) = �0 max
⇣
log(T0/T ), 1

⌘

Where �0 and T0 are fitting parameters. The experi-
mental data can be accurately fitted for �0 = 3.15 and
T0 =105K.

Appendix A: Calculation of the self-energy

We compute the electronic self-energy, due to the in-
teraction with CDF modes, by means of the Fock ap-
proximation, which diagrammatically is represented as
follows:

k, i!n

k�p, i(!n�⌦`)

p, i⌦`

k, i!n

The analytic expression for the imaginary part of the
(retarded) self-energy associated to this diagram is17,37:

Im⌃R(k,!) =
g2

N

X

p

ImD(k+p,!�⇠p)
�
f(⇠p)+b(⇠p�!)

�

Where g is the coupling constant between electrons
and CDFs, which has the dimension of an energy. This
expression is quite general, our only hypotesis are that
the poles of D(k,!) (as a function of !) are in the lower
half-plane, and that ImD(k,!) goes to zero sufficiently
fast when ! ! 1. For the purposes of our discussion,
D(k,!) is the retarded CDF propagator exhibited at the
beginning of Sec.II, which satisfies both necessary as-
sumptions. Of course, being ⌃R(k,!) a retarded function
its imaginary part must be negative. This property also
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I. INTRODUCTION

The presence of a quantum critical point (QCP) in the
phase diagram of a metallic system often causes a devia-
tion of the properties of the system, in proximity of the
critical point itself, from those predicted by the standard
Fermi liquid (FL) paradigm. Some of the most canonical
examples of non-FL behavior due to proximity to a QCP
include heavy-fermion systems1 and high-temperature
superconducting cuprates2,3, as long as some iron-based
superconductors4 and organic metals. For many of these
systems, the most prominent deviation from FL behav-
ior is the linear-in-T resistivity, stable from the lowest
to the highest temperatures with no change in slope.
Sometimes, this phenomenon is accompanied by ther-
modynamic criticalities, the most important of all being
the (seemingly) logarithmic divergence in temperature
of the Cv/T and S/T ratios (being Cv the specific heat
and S the Seebeck coefficient) in the low temperature
limit5,6. Henceforth, we will refer to this kind of behav-
ior as strange-metal behavior.

Although the strange-metal behavior is still an un-
solved problem in condensed matter theory, the most
common interpretation given to this behavior is based on
the fact that order parameter fluctuations in the vicin-
ity of the QCP can be strong enough to destabilize the
FL order. This scenario can be implemented in several
ways, the one we focus on is based on the presence of
a dynamical charge density waves order. The charge
density waves phase finds stable theoretical support in
the frustrated phase separation mechanism7–9, which is
based on the idea that electrons tend to segregate on a
short scale as a compromise between Coulomb repulsion
and residual attractive forces (such as that mediated by
phonons). For the paradigmatic case of cuprates, the
experimental evidence of charge density waves has been
confirmed in all known compunds thanks to resonant X-
ray scattering experiment for over ten years now10–13.
A recent x-ray experiment14 has shown the existence of
another kind of charge collective modes, which coexists
with charge density waves but is characterized by a wider
distribution in the momentum space. These collective
modes, known as charge density fluctuations (CDF), can
be thought of as a kind of “missed” charge density waves,
which for some reason fail to establish long-range order.
We have recently shown15,16 that CDFs, by mediating
an effective interaction between electrons and contribut-
ing themselves to the thermodynamics of the systems in
which they are present, are suitable for explaining both

the linear-in-T trend of the resistivity and the logarith-
mic divergence of the specific heat. As we shall see, our
description is based on the phenomenological assump-
tion that the Landau damping of these collective modes
can strongly increase close to the QCP. Furthermore, we
shown that our assumption finds its justification in 2D
systems in terms of coupling between CDFs and electron
density diffusive modes17. The main goal of this work is
to show that the same descriptive scheme is able to take
into account also the divergence of the Seebeck coefficient
observed in some cuprate compounds. The structure of
the paper is the following:

• In Sec. II we exhibit the model on which we rely
for the description of the phenomena of our inter-
est. We will also provide an expression for electrical
conductivity within our formalism.

• In Secc. III and IV we will show the calculation of
the fermionic and boson contribution (respectively)
to the Seebeck coefficient.

• Finally, in Sec. V we will give our concluding re-
marks.

II. CDF MODEL FOR THE TRANSPORT
COEFFICIENTS

In our model we consider only electronic quasiparticles
and CDF collective modes. The latter will have the dual
effect of dressing the electrons and contributing directly
to heat. For a Gaussian QCP in a metal, with a dynam-
ical critical index z = 2, the retarded propagator of the
fluctuations with wavevector q and frequency ! is the
following (with ~ = 1)14

D(q,!) =
1

m+ ⌫̄|q� qc|2 � i�! � !2

⌦

Here m = ⌫̄⇠�2 is the mass of the fluctuations, which
measures the distance from the QCP (⇠ denotes the cor-
relation length), ⌫̄ is a bosonic energy scale (we work with
dimensionless momenta, measured in units of the recip-
rocal of the lattice constant), the dimensionless param-
eter � quantitatively describes the Landau damping of
the fluctuations, qc is the critical wavevector of the fluc-
tuations and ⌦ is a high frequency cutoff. The dressed
retarded electronic Green’s function is given by Dyson
equation:

Also the CDF-drag contribution to 
thermopower is proportional to g~log(1/T)
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Figure 2: S/T as a function of T both in logarithmic and in linear scale (the green
lines are the theoretical curves, while the points are taken from experimental
data).
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FIG. 3. Summary of pressure e↵ects on the transport properties of Nd-LSCO near p?. Top row (ambient pressure): (a) Seebeck
coe�cient S/T , (b) electrical resistivity ⇢, and (c) Hall coe�cient RH in Nd-LSCO at p = 0.22 and 0.24, in the field-induced
normal-state. Data for S/T are from the present study (0.1 GPa; open circles) and from ref. [18] (ambient; dots), in the H ! 0
limit obtained via back-extrapolations as shown in Fig. 2. Data for ⇢ and RH are reproduced from ref. [2], and are respectively
in zero-field (grey) and H = 16 T at high temperature, and H = 33 T at low temperature. In panel (b), we label the value
of ⇢ at p = 0.22 and H = 33 T, extrapolated to T ! 0, as ⇢(0), and the value obtained from a linear extrapolation of the
high temperature T -linear regime as ⇢0. Bottom row (2.0 GPa): data on Nd-LSCO at p = 0.22 under a pressure of 2.0 GPa,
showing a clear suppression of the low-temperature normal-state S/T (d), ⇢ (e), and RH (f). Data for S/T are from the present
study in H = 31 T. Data for ⇢ and RH are reproduced from ref. [12], in fields as indicated.

continuously from 2 to 300K within a few hours and, 2)
a greater stability against noise and perturbations that
typically plague DC measurements. We carefully bench-
marked our approach against the DC method and found
no significant di↵erence.
Pressure was applied on our samples using a miniature

non-magnetic piston-cylinder cell. The pressure medium
is Daphne oil 7474, which remains liquid at all pressures
measured here at 300 K, ensuring a high degree of hy-
drostaticity. The internal pressure is measured both at
room temperature and at 4.2 K, using either the fluo-
rescence of a small ruby chip or a Sn manometer. The
values quoted throughout are the low temperature pres-
sures. The error bar on all the pressure values is ± 0.05
GPa, which comes from the uncertainty in measuring the
position of the fluorescence peaks For each measurement,
the cell was cooled slowly (< 1 K/min) to ensure a ho-
mogeneous freezing of the pressure medium.
Large single crystals of Nd-LSCO were grown at Texas

Materials Institute by a traveling float-zone technique
in an image furnace, with nominal Sr concentrations
x = 0.12, 0.22, and 0.24. Two of these samples (0.22
and 0.24) were previously measured by electrical re-
sistivity and Hall e↵ect [2], and all three were stud-

ied by thermal conductivity [8] (sample details can be
found in these references). Our crystal of Eu-LSCO with
x = 0.125 was grown in Tokyo. Thermopower measure-
ments on a closely related sample were previously re-
ported in ref. [21], further sample details can be found
there. The hole concentration p of each sample is given by
p = x. Samples were cut into small rectangular platelets
of typical dimensions 1 mm ⇥ 0.5 mm ⇥ 0.2 mm, with
the shortest dimension along the c axis. Contacts were
made with H20E silver epoxy di↵used by annealing at
high temperature in flowing oxygen. Thermopower mea-
surements under pressure in magnetic fields up to 18 T
were performed at Sherbrooke, and up to 31 T at the
NHMFL in Tallahassee. The magnetic field was applied
along the c axis and the Seebeck voltage signal was sym-
metrized with respect to field inversion in order to remove
contaminations from the Nernst e↵ect.

Gourgout et al., PHYSICAL REVIEW RESEARCH 
3, 023066 (2021) 

When g~log(1/T) then the same behavior 
occurs for Seebeck and CV/T
G. Mirarchi et al.

G. Mirarchi et al, in preparaQon
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CDF contribution only, under experimental conditions that suppress the other scattering
channels. One may argue that the energy scales related to other scattering mechanisms
(e.g., T

⇤ or Tc) would eventually appear as low-energy cutoffs in Equation (4), instead
of T, preventing g from diverging. For instance, since superconductivity removes low-
energy fermion quasiparticles, the damping g is expected to decrease when entering the
superconducting phase (see Section 5).
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Figure 3. (a) Schematic representation of the energy scales and their evolution with doping and
temperature. The green shaded area corresponds to the Fermi liquid region of the phase diagram [see
panel (b)], the blue region is where the pseudogap is present, while in the reddish region, the strange
metal occurs. The dark blue dashed lines separate the standard renormalized classical, quantum
critical, and quantum disordered regions around the true CDW-QCP. The red dashed line mark the
doping and temperature evolution of the characteristic energy scale of CDF, M/g, which decreases
substantially when M/g becomes smaller than 1/t (dotted black line). In the present scenario, the
unknown connection between the large-g region and the standard Hertz–Millis QCP is represented
by a question mark in a cloud. (b) Schematic phase diagram of cuprates as a function of doping p

reporting the pseudogap crossover temperature T
⇤ (blue short-dashed line), the hidden transition

line TCDW(p) for charge density wave formation, ending at T = 0 into a CDW-QCP at pCDW is
represented by a dark-blue long-dashed line. Below the green dashed line, the Fermi-liquid regime
takes place. The red dashed line marks the crossover M/g = T between the semiclassical region of
CDF (above it) and the quantum regime (below it). The yellow, red, and blue vertical lines correspond
to the resistivity vs. temperature curves reported in (c). (c) Schematic behavior of the resistivity as a
function of T at the doping values corresponding to the regions of the yellow, red , and blue vertical
lines of the panel (b).

5. Discussion
In this work, we investigated the dynamics of OPF in the disordered region not far from

a QCP. Although the quantum OPFs are intrinsically dynamical even at finite temperatures,
our results show that a divergent dissipation destroys this quantum character leading to
fluctuations that are semiclassical down to T = 0. This effect is similar to that found in
Ref. [50], where dissipation quenches the instantons describing the quantum tunneling
between local free energy minima of a disordered system. The classical statistics induced
here by the increase in dissipation is then directly reflected in the linear-in-T resistivity,
owing to the almost homogeneous scattering mediated among the Fermi quasiparticles all
over the Fermi surface [32,35,36].

A few remarks are now in order. First of all, the ingredients of quenched impurities
and 2D short-ranged OPFs are so generic that a similar mechanism can easily be at work
in other (maybe all) systems where the strange metal behavior is observed in the form of
a linear-in-T resistivity and a logarithmic CV/T. The heavy fermion systems CeCu6�xXx

(X=Au, Ag) are just possible examples out of many others [2,9,24]. As evident from
Equation (4), the logarithmic divergence of term dg is a consequence of the fact that we
are dealing with a 2D system. Strictly speaking, the possible divergence of dg, as well as

Where and how g grows?

of p. However, in those cases the task is more difficult because the
CDW peak at zero energy cannot be resolved from the CDF signal at
very low energy, being the respective critical wave-vectors almost
coincident (see Fig. 3d). Therefore we have studied the CDF far from
qCDF, where the CDW contribute negligibly to the scattering intensity,
i.e., along the (H,H) direction andon the tails of the (H,0) scan.Whatwe
can determine in this way isΩ, the bosonic characteristic energy of the
CDF previously mentioned. We expect Ω to be related to, and larger
than, the energy Δ at qCDF. For convenience, we assume that Ω is
constantwith respect to temperature, since theT-dependentω0 term
is little relevant in the expression of Ω for each doping p. Conse-
quently, the energy-integral of the quasi-elastic intensity far from
qCDF can be simply attributed to a bosonic distribution function of a
single characteristic energyΩ at all temperatures. Even before fitting
the experimental data we observe that the T dependence of the
intensity is very similar at all q positions along the (H,H) and that it
strongly depends on the doping level (see Fig. 4a, b). We fitted those
curves with a simple function A+ I0 1 + 2 eΩ=kBT ! 1

! "!1
h i

where I0 is
the CDF intensity at zero temperature and A accounts for the non-
CDF scattering contributions (see Methods and Supplementary
Fig. 4). We can thus be confident in using the same method at
intermediate doping. Interestingly,Ω is 15–20meV larger forp = 0.06

than for p = 0.19, which is close towhat we have also observed at qCDF
for Δ (see Fig. 4c).

The values of Δ, converted into kelvin, are shown in the phase
diagram of Fig. 4d for a set of YBCO, NBCO and Bi2212 samples,
including those previously used in ref. 26. Both below and above p*
these points line up with the border of the strange metal phase as
determined by transport24,41,42 (shaded regions in Fig. 4d) and define a
characteristic wedge with a minimum at p*.

Discussion
Thanks to an innovative analysis of RIXS data, applied to a large set of
measurements (6 doping levels, 3 families of samples, wide tempera-
ture range, high and low resolution in energy), we provide here a
consistent assessment of the doping and temperature dependences of
the CDF intensity and energy in superconducting cuprates. We find
that the CDF scattering intensity is strongest in proximity of p ~ 0.19
and at low T, while it fades both when increasing the temperature and
when moving the doping away from p*. Moreover, the energy
ΔðTmin,pÞ, i.e. the minimum of the parabolic relation for the CDF dis-
persion in the q-space, is lowest at p ~ 0.19, while it increases with
temperature at all dopings. The results are summarized in Fig. 4e,
where we depict the CDF dispersion relation using the propagator of
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Fig. 4 | Charge density fluctuations in the cuprate phase diagram. a The inte-
grated intensity measured on YBCO (p ≈0.06) is presented as a function of the
temperature for several momenta along the (H,H) direction. For each momentum,
the solid line represents the fit of the data assuming a Bose distribution function.
b Same as previous panel, on YBCO (p ≈0.19). c The energies Ω, determined from
the Bose fit on spectra measured along the (H,H) direction, are plotted together
with the energies Δ, directly measured at q = qCDF in the very high resolution
spectra. Here and in the next panel we consider the Δ valuemeasured at the lowest
temperature. The two NBCO samples are from Ref. 26. At any doping, Ω >Δ, as
expected when moving away from qCDF. As highlighted by the lines, which are

guides to the eye, both energies increase when decreasing the doping, with a
minimum at p =0.19. d The temperatures corresponding to the energies Δ are
presented as a function of doping p as filled symbols. In the constructed cuprate
phase diagram, we also show the temperatureTL, where the linear-in-T dependence
of the resistance, signature of the strange metal behavior, is lost in YBCO and
Bi221224,41,42. e In the p-T phase diagram, we have depicted the CDF dispersion
relation at three temperatures (T ≈ 20K, T ≈ 100K, T ≈ 300K) and doping levels
(p =0.06, p =0.19, p =0.22), using the propagator of Eq. (2) and the energy values
experimentally determined in this work.
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SOME EXPERIMENTAL CONSEQUENCES

The interaction is (almost) momentum independent ⇒ vertex corrections negligible in current-current response
⇒S(w,T) (almost) fully determines the optical conductivity s(w,T)

• At w>T, s(w,T) quite similar to the MFL case 
(see Michon et al, Nat Commun. 2023)

• But notice that s(w,T) scaling in not perfect at low w when T<100 K
M/g is small but finite and spoils perfect scaling

How about the effective mass m*(w~0)? 

This linear dependence of the scattering rate calls for a com-
parison with resistivity. Hence we have also measured the tem-
perature dependence of the resistivity of our sample under two
magnetic fields H = 0 T and H = 16 T. As displayed in Fig. 2a, the
resistivity has a linear T-dependence ρ = ρ0 + AT over an extended
range of temperature, with A ≈ 0.63 μΩcm/K. This is a hallmark of
cuprates in this regime of doping10,13,14,20,53. It is qualitatively con-
sistent with the observed linear frequency dependence of the scat-
tering rate and, as discussed later in this paper, also in good
quantitative agreement with the ω→ 0 extrapolation of our optical
data within experimental uncertainties.

The optical mass enhancement m*(ω)/m is displayed in Fig. 1d.
With the chosen normalization, m*/m does not reach the asymptotic
value of one in the range ℏω <0.4 eV, which means that intra- and
interband and/or mid-infrared transitions overlap above 0.4 eV. The
inset of Fig. 1d shows a semi-log plot of the mass enhancement eval-
uated atℏω = 5kBT, where thenoise level is low forT⩾ 40K.Despite the
larger uncertainties at low T, this plot clearly reveals a logarithmic
temperature dependence ofm*/m. This is a robust feature of the data,
independent of the choice of ϵ∞ and K. We note that the specific heat
coefficient C/T of LSCO at the same doping level was previously
reported to display a logarithmic dependence on temperature, see
Fig. 2c47,48. We will further elaborate on this important finding of a
logarithmic dependence of the optical mass and discuss its relation to
specific heat in the next section.

Scaling analysis
In this section, we consider simultaneously the frequency and tem-
peraturedependenceof theoptical properties and investigatewhether
ℏω/kBT scaling holds for this sample close to the pseudogap critical

point. We propose a procedure to determine the three parameters ϵ∞,
K, and m introduced above.

Puttingω/T scaling to the test. Quantum systems close to a quantum
critical point display scale invariance. Temperature being the only
relevant energy scale in the quantumcritical regime, this leads inmany
cases toω/T scaling22 (inmost of the discussion below, we set ℏ = kB = 1
except when mentioned explicitly). In such a system we expect the
complex optical conductivity to obey a scaling behavior 1/
σ(ω, T)∝ TνF(ω/T), with ν⩽ 1 a critical exponent. More precisely, the
scaling properties of the optical scattering rate and effective mass
read:

1=τðω,TÞ=Tνf τ ðω=TÞ ð4Þ

m*ðω,TÞ #m*ð0,TÞ=Tν#1f mðω=TÞ ð5Þ

with fτ and fm two scaling functions. This behavior requires that both ℏω
and kBT are smaller than a high-energy electronic cutoff, but their ratio
can be arbitrary. Furthermore, we note that when ν = 1 (Planckian case)
the scaling is violated by logarithmic terms, which control in particular
the zero-frequency value of the optical mass m*(0,T). As shown in
Theorywithin a simple theoreticalmodel,ω/T scalingnonetheless holds
in this case to an excellent approximation provided that m*(0, T) is
subtracted, as in Eq. (5). We also note that in a Fermi liquid, the single-
particle scattering rate∝ω2 + (πT)2 does obeyω/T scaling (with formally
ν = 2), but the optical conductivity does not. Indeed, it involves ω/T2

terms violating scaling, and hence depends on two scaling variables
ω/T2 and ω/T, as is already clear from an (approximate) generalized
Drudeexpression 1/σ ≈ − iω + τ0[ω2 + (2πT)2]. For a detaileddiscussionof
this point, see Ref. 54. Such violations of scaling by ω/Tν terms apply
more generally to the case where the scattering rate varies as Tν with
ν > 1. Hence, ω/T scaling for both the optical scattering rate and optical
effective mass are a hallmark of non-Fermi liquid behavior with ν⩽ 1.
Previous work has indeed provided evidence for ω/T scaling in the
optical properties of cuprates23,24.

Here, we investigate whether our optical data obey ω/T scaling.
We find that the quality of the scaling depends sensitively on the
chosen value of ϵ∞. Different prescriptions in the literature to fix ϵ∞
yield—independently of themethod used—values ranging from ϵ∞ ≈ 4.3
for strongly underdoped Bi2212 to ϵ∞ ≈ 5.6 for strongly overdoped
Bi221232,55. The parameter ϵ∞ is commonly understood to represent the
dielectric constant of thematerial in the absenceof the charge carriers,
and is caused by the bound charge responsible for interband transi-
tions at energies typically above 1 eV. While this definition is unam-
biguous for the insulating parent compound, for the doped material
one is confronted with the difficulty that the optical conductivity at
these higher energies also contains contributions described by the
self-energy of the conduction electrons, caused for example by their
coupling to dd-excitations56. Consequently, not all of the oscillator
strength in the interband region represents bound charge. Our model
overcomes this hurdle by determining the low-energy spectrumbelow
0.4 eV, and subsuming all bound charge contributions in a single
constant ϵ∞. Its value is expected to be bound from above by the value
of the insulating phase, in other words we expect to find ϵ∞ < 4.5 (see
Supplementary Information Sec. A). Rather than setting an a priori
value for ϵ∞, we follow here a different route and we choose the value
that yields the best scaling collapse for a given value of the exponent ν.
This program is straightforwardly implemented for 1/τ and indicates
that the best scaling collapse is achieved with ν ≈ 1 and ϵ∞ ≈ 3, see
Fig. 2b as well as Supplementary Information Sec. B and Supplemen-
tary Fig. 2. Turning to m*, we found that subtracting the dc value
m*(ω =0, T) is crucial when attempting to collapse the data. Extra-
polating optical data to zero frequency is hampered by noise. Hence,

Fig. 2 | Scaling of scattering rate and mass enhancement. a Temperature-
dependent resistivity measured in zero field (black) and at 16 teslas (red). The inset
emphasizes the linearity of the 16 T data at low temperature. The dashed line shows
ρ0 +AT with ρ0 = 12.2 μΩcm and A =0.63 μΩcm/K. b Scattering rate divided by
temperature plotted versus ω/T; the collapse of the curves indicates a behavior 1/
τ ~ Tfτ(ω/T). c Effective quasiparticle mass (in units of the indicated band mass m)
deduced from the low-temperature electronic specific heat47

[m*
Cp = ð3=πÞð_

2dc=k
2
BÞðC=TÞ] and zero-frequency optical mass enhancement; the

dashed lines indicate lnT behavior. dOptical mass minus the zero-frequencymass
shown in c plotted versus ω/T; the collapse of the curves indicates a behavior
m*(ω) −m*(0) ~ fm(ω/T). The data between0.22 and0.4 eV are shown asdotted lines.
ϵ∞ = 2.76 was used here as in Fig. 1.
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This linear dependence of the scattering rate calls for a com-
parison with resistivity. Hence we have also measured the tem-
perature dependence of the resistivity of our sample under two
magnetic fields H = 0 T and H = 16 T. As displayed in Fig. 2a, the
resistivity has a linear T-dependence ρ = ρ0 + AT over an extended
range of temperature, with A ≈ 0.63 μΩcm/K. This is a hallmark of
cuprates in this regime of doping10,13,14,20,53. It is qualitatively con-
sistent with the observed linear frequency dependence of the scat-
tering rate and, as discussed later in this paper, also in good
quantitative agreement with the ω→ 0 extrapolation of our optical
data within experimental uncertainties.

The optical mass enhancement m*(ω)/m is displayed in Fig. 1d.
With the chosen normalization, m*/m does not reach the asymptotic
value of one in the range ℏω <0.4 eV, which means that intra- and
interband and/or mid-infrared transitions overlap above 0.4 eV. The
inset of Fig. 1d shows a semi-log plot of the mass enhancement eval-
uated atℏω = 5kBT, where thenoise level is low forT⩾ 40K.Despite the
larger uncertainties at low T, this plot clearly reveals a logarithmic
temperature dependence ofm*/m. This is a robust feature of the data,
independent of the choice of ϵ∞ and K. We note that the specific heat
coefficient C/T of LSCO at the same doping level was previously
reported to display a logarithmic dependence on temperature, see
Fig. 2c47,48. We will further elaborate on this important finding of a
logarithmic dependence of the optical mass and discuss its relation to
specific heat in the next section.

Scaling analysis
In this section, we consider simultaneously the frequency and tem-
peraturedependenceof theoptical properties and investigatewhether
ℏω/kBT scaling holds for this sample close to the pseudogap critical

point. We propose a procedure to determine the three parameters ϵ∞,
K, and m introduced above.

Puttingω/T scaling to the test. Quantum systems close to a quantum
critical point display scale invariance. Temperature being the only
relevant energy scale in the quantumcritical regime, this leads inmany
cases toω/T scaling22 (inmost of the discussion below, we set ℏ = kB = 1
except when mentioned explicitly). In such a system we expect the
complex optical conductivity to obey a scaling behavior 1/
σ(ω, T)∝ TνF(ω/T), with ν⩽ 1 a critical exponent. More precisely, the
scaling properties of the optical scattering rate and effective mass
read:

1=τðω,TÞ=Tνf τ ðω=TÞ ð4Þ

m*ðω,TÞ #m*ð0,TÞ=Tν#1f mðω=TÞ ð5Þ

with fτ and fm two scaling functions. This behavior requires that both ℏω
and kBT are smaller than a high-energy electronic cutoff, but their ratio
can be arbitrary. Furthermore, we note that when ν = 1 (Planckian case)
the scaling is violated by logarithmic terms, which control in particular
the zero-frequency value of the optical mass m*(0,T). As shown in
Theorywithin a simple theoreticalmodel,ω/T scalingnonetheless holds
in this case to an excellent approximation provided that m*(0, T) is
subtracted, as in Eq. (5). We also note that in a Fermi liquid, the single-
particle scattering rate∝ω2 + (πT)2 does obeyω/T scaling (with formally
ν = 2), but the optical conductivity does not. Indeed, it involves ω/T2

terms violating scaling, and hence depends on two scaling variables
ω/T2 and ω/T, as is already clear from an (approximate) generalized
Drudeexpression 1/σ ≈ − iω + τ0[ω2 + (2πT)2]. For a detaileddiscussionof
this point, see Ref. 54. Such violations of scaling by ω/Tν terms apply
more generally to the case where the scattering rate varies as Tν with
ν > 1. Hence, ω/T scaling for both the optical scattering rate and optical
effective mass are a hallmark of non-Fermi liquid behavior with ν⩽ 1.
Previous work has indeed provided evidence for ω/T scaling in the
optical properties of cuprates23,24.

Here, we investigate whether our optical data obey ω/T scaling.
We find that the quality of the scaling depends sensitively on the
chosen value of ϵ∞. Different prescriptions in the literature to fix ϵ∞
yield—independently of themethod used—values ranging from ϵ∞ ≈ 4.3
for strongly underdoped Bi2212 to ϵ∞ ≈ 5.6 for strongly overdoped
Bi221232,55. The parameter ϵ∞ is commonly understood to represent the
dielectric constant of thematerial in the absenceof the charge carriers,
and is caused by the bound charge responsible for interband transi-
tions at energies typically above 1 eV. While this definition is unam-
biguous for the insulating parent compound, for the doped material
one is confronted with the difficulty that the optical conductivity at
these higher energies also contains contributions described by the
self-energy of the conduction electrons, caused for example by their
coupling to dd-excitations56. Consequently, not all of the oscillator
strength in the interband region represents bound charge. Our model
overcomes this hurdle by determining the low-energy spectrumbelow
0.4 eV, and subsuming all bound charge contributions in a single
constant ϵ∞. Its value is expected to be bound from above by the value
of the insulating phase, in other words we expect to find ϵ∞ < 4.5 (see
Supplementary Information Sec. A). Rather than setting an a priori
value for ϵ∞, we follow here a different route and we choose the value
that yields the best scaling collapse for a given value of the exponent ν.
This program is straightforwardly implemented for 1/τ and indicates
that the best scaling collapse is achieved with ν ≈ 1 and ϵ∞ ≈ 3, see
Fig. 2b as well as Supplementary Information Sec. B and Supplemen-
tary Fig. 2. Turning to m*, we found that subtracting the dc value
m*(ω =0, T) is crucial when attempting to collapse the data. Extra-
polating optical data to zero frequency is hampered by noise. Hence,

Fig. 2 | Scaling of scattering rate and mass enhancement. a Temperature-
dependent resistivity measured in zero field (black) and at 16 teslas (red). The inset
emphasizes the linearity of the 16 T data at low temperature. The dashed line shows
ρ0 +AT with ρ0 = 12.2 μΩcm and A =0.63 μΩcm/K. b Scattering rate divided by
temperature plotted versus ω/T; the collapse of the curves indicates a behavior 1/
τ ~ Tfτ(ω/T). c Effective quasiparticle mass (in units of the indicated band mass m)
deduced from the low-temperature electronic specific heat47

[m*
Cp = ð3=πÞð_

2dc=k
2
BÞðC=TÞ] and zero-frequency optical mass enhancement; the

dashed lines indicate lnT behavior. dOptical mass minus the zero-frequencymass
shown in c plotted versus ω/T; the collapse of the curves indicates a behavior
m*(ω) −m*(0) ~ fm(ω/T). The data between0.22 and0.4 eV are shown asdotted lines.
ϵ∞ = 2.76 was used here as in Fig. 1.
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It seems that  m*/m from specific heat CV/T and from optics 
m*(0)/m are similar and divergent.   But in SFL m* is finite!
Is there a problem for the SFL scenario?

Michon et al, Nat Commun. 2023

tains a !-like Drude term, while the critical CM’s may give
absorption at finite frequencies.

The RPA effective interaction of Fig. 1!b", "= !V−1

−#"−1 #here #!q"$−T%kG0!k+q"G0!k" is the QP polariza-
tion bubble&, near the QCP has the generic form

"!q" = − #$
−1!m + %q + '$n' + $n

2/&̄"−1, !1"

for small frequencies and q( ±qc. Here, #$$'##!qc ,$n"
−#!qc ,0"& / '$n''$n=0, and %q(''q(qc'2. m, ', and &̄ are
model-dependent coefficients which result from the second-
order expansion of V−1−# around qc and $n=0. Except for
the $n

2 term, "!q" has the general hydrodynamic form of a
propagator for diffusive CM’s !damped by QP’s" near a
Gaussian QCP. Here m, proportional to the square of the
inverse correlation length, is the CM mass measuring the
distance from criticality. If the frequency dependence of "
only arises from the QP bubble #—i.e., if the bare interac-
tion V is purely static—the optical response is zero #the dia-
grams of Fig. 1!c" cancel each other&, as we show below. On
the other hand, if the bare interaction V has its own dynam-
ics, a finite )!&" is obtained. We analyze these two situa-
tions, and for concreteness we fix the values of the param-
eters, adopting as an example the model of Ref. 15. There, a
bare interaction V!q"=V0!q"−*$̄2!$̄2+$n

2"−1 was consid-
ered, arising from both a static short- and long-range Cou-
lomb repulsion V0 and from the coupling to a dispersionless
phonon of frequency $̄. For moderate electron-phonon cou-
pling *+%F, where %F is the typical QP Fermi energy !in
cuprates, e.g., %F(0.3 eV", this interaction can lead to a
charge-ordering instability, at a wave vector qc. Within this
model we find m$#$

−1)#*−V0!qc"&−1+#!qc ,0"* and &̄
$*−1$̄2#*−V0!qc"&2#$. In Refs. 2 and 15 the instability,
signaled by a vanishing m, occurred for *+V0
+'#!qc ,0"'−1+%F. Then, we estimate '+%F /kF

2 !kF is the

Fermi momentum" and &̄+ $̄!$̄ /%F".
Current-current response function. Near criticality, the

diagrams of Fig. 1!c", with incoming zero momentum and
finite frequency &l, are dominated by the poles of the CM
propagators. Then, we write the vertex–self-energy !VS" and
Aslamazov-Larkin !AL" contributions to the current-current
response function , j j

-- as T%q,$n
VVS

--!$n ,&l""!q ,$n" and
1
2T%q,$n

#VAL
- !$n ,&l"&2"!q ,$n""!q ,&l+$n", where -=x ,y,

and we have exploited the relation "!q ,$n"="!−q ,$n". The
vertices VVS

-- and VAL
- come from the integration on the QP

loops. To perform an analytic calculation, we adopt the stan-
dard procedure of linearizing the QP dispersion around the
points of the Fermi surface connected by qc #hot spots
!HS’s"&.1 Then, we find !see also Ref. 16"

VVS
--!$n,&l" = −

e2

2
#$!u-"2&l

−2

.!'&l + $n' − 2'$n' + '&l − $n'" , !2"

VAL
- !$n,&l" = − ie#$u-&l

−1!'&l + $n' − '$n'" , !3"

where e is the electron charge, u-$vHS1
- −vHS2

- , and vHS
- is

the - component of the Fermi velocity at the HS’s !see Fig.
2". The vertices vanish identically in the direction perpen-
dicular to qc—i.e., for -=y—since in Fig. 2 we took qc
along the x axis and vHS1

y =vHS2
y —i.e., uy $0. Thus , j j

yy!&l"
$0 for &l!0, regardless of the retarded or static character
of the bare interaction V.

To calculate , j j
xx, we exploit the identity

"!q,$n""!q,&l + $n" =
#$

−1#"!q,&l + $n" − "!q,$n"&

'&l + $n' − '$n' +
&l

&̄
!&l + 2$n"

,

!4"

which is immediately derived from Eq. !1" and allows us to
write the AL contribution to , j j

xx as

FIG. 1. !a" Typical diagram of our BK generating functional.
The solid and dashed lines represent the QP propagator and the bare
interaction V!q", respectively. !b" Bubble resummation to obtain the
RPA-dressed CM propagator !wavy line". !c" Diagrams for the
current-current response, obtained from current-vertex insertions
!solid dots" in the diagrams of the BK functional. AL, V, and S
stand for Aslamazov-Larkin-like, vertex, and self-energy diagrams,
respectively.

FIG. 2. Sketch of a two-dimensional Fermi surface with four
HS’s connected by a generic incommensurate critical wave vector
qc= !qc ,0". Fermi velocities at the HS’s and their components are
also shown.
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SOME EXPERIMENTAL CONSEQUENCES

This linear dependence of the scattering rate calls for a com-
parison with resistivity. Hence we have also measured the tem-
perature dependence of the resistivity of our sample under two
magnetic fields H = 0 T and H = 16 T. As displayed in Fig. 2a, the
resistivity has a linear T-dependence ρ = ρ0 + AT over an extended
range of temperature, with A ≈ 0.63 μΩcm/K. This is a hallmark of
cuprates in this regime of doping10,13,14,20,53. It is qualitatively con-
sistent with the observed linear frequency dependence of the scat-
tering rate and, as discussed later in this paper, also in good
quantitative agreement with the ω→ 0 extrapolation of our optical
data within experimental uncertainties.

The optical mass enhancement m*(ω)/m is displayed in Fig. 1d.
With the chosen normalization, m*/m does not reach the asymptotic
value of one in the range ℏω <0.4 eV, which means that intra- and
interband and/or mid-infrared transitions overlap above 0.4 eV. The
inset of Fig. 1d shows a semi-log plot of the mass enhancement eval-
uated atℏω = 5kBT, where thenoise level is low forT⩾ 40K.Despite the
larger uncertainties at low T, this plot clearly reveals a logarithmic
temperature dependence ofm*/m. This is a robust feature of the data,
independent of the choice of ϵ∞ and K. We note that the specific heat
coefficient C/T of LSCO at the same doping level was previously
reported to display a logarithmic dependence on temperature, see
Fig. 2c47,48. We will further elaborate on this important finding of a
logarithmic dependence of the optical mass and discuss its relation to
specific heat in the next section.

Scaling analysis
In this section, we consider simultaneously the frequency and tem-
peraturedependenceof theoptical properties and investigatewhether
ℏω/kBT scaling holds for this sample close to the pseudogap critical

point. We propose a procedure to determine the three parameters ϵ∞,
K, and m introduced above.

Puttingω/T scaling to the test. Quantum systems close to a quantum
critical point display scale invariance. Temperature being the only
relevant energy scale in the quantumcritical regime, this leads inmany
cases toω/T scaling22 (inmost of the discussion below, we set ℏ = kB = 1
except when mentioned explicitly). In such a system we expect the
complex optical conductivity to obey a scaling behavior 1/
σ(ω, T)∝ TνF(ω/T), with ν⩽ 1 a critical exponent. More precisely, the
scaling properties of the optical scattering rate and effective mass
read:

1=τðω,TÞ=Tνf τ ðω=TÞ ð4Þ

m*ðω,TÞ #m*ð0,TÞ=Tν#1f mðω=TÞ ð5Þ

with fτ and fm two scaling functions. This behavior requires that both ℏω
and kBT are smaller than a high-energy electronic cutoff, but their ratio
can be arbitrary. Furthermore, we note that when ν = 1 (Planckian case)
the scaling is violated by logarithmic terms, which control in particular
the zero-frequency value of the optical mass m*(0,T). As shown in
Theorywithin a simple theoreticalmodel,ω/T scalingnonetheless holds
in this case to an excellent approximation provided that m*(0, T) is
subtracted, as in Eq. (5). We also note that in a Fermi liquid, the single-
particle scattering rate∝ω2 + (πT)2 does obeyω/T scaling (with formally
ν = 2), but the optical conductivity does not. Indeed, it involves ω/T2

terms violating scaling, and hence depends on two scaling variables
ω/T2 and ω/T, as is already clear from an (approximate) generalized
Drudeexpression 1/σ ≈ − iω + τ0[ω2 + (2πT)2]. For a detaileddiscussionof
this point, see Ref. 54. Such violations of scaling by ω/Tν terms apply
more generally to the case where the scattering rate varies as Tν with
ν > 1. Hence, ω/T scaling for both the optical scattering rate and optical
effective mass are a hallmark of non-Fermi liquid behavior with ν⩽ 1.
Previous work has indeed provided evidence for ω/T scaling in the
optical properties of cuprates23,24.

Here, we investigate whether our optical data obey ω/T scaling.
We find that the quality of the scaling depends sensitively on the
chosen value of ϵ∞. Different prescriptions in the literature to fix ϵ∞
yield—independently of themethod used—values ranging from ϵ∞ ≈ 4.3
for strongly underdoped Bi2212 to ϵ∞ ≈ 5.6 for strongly overdoped
Bi221232,55. The parameter ϵ∞ is commonly understood to represent the
dielectric constant of thematerial in the absenceof the charge carriers,
and is caused by the bound charge responsible for interband transi-
tions at energies typically above 1 eV. While this definition is unam-
biguous for the insulating parent compound, for the doped material
one is confronted with the difficulty that the optical conductivity at
these higher energies also contains contributions described by the
self-energy of the conduction electrons, caused for example by their
coupling to dd-excitations56. Consequently, not all of the oscillator
strength in the interband region represents bound charge. Our model
overcomes this hurdle by determining the low-energy spectrumbelow
0.4 eV, and subsuming all bound charge contributions in a single
constant ϵ∞. Its value is expected to be bound from above by the value
of the insulating phase, in other words we expect to find ϵ∞ < 4.5 (see
Supplementary Information Sec. A). Rather than setting an a priori
value for ϵ∞, we follow here a different route and we choose the value
that yields the best scaling collapse for a given value of the exponent ν.
This program is straightforwardly implemented for 1/τ and indicates
that the best scaling collapse is achieved with ν ≈ 1 and ϵ∞ ≈ 3, see
Fig. 2b as well as Supplementary Information Sec. B and Supplemen-
tary Fig. 2. Turning to m*, we found that subtracting the dc value
m*(ω =0, T) is crucial when attempting to collapse the data. Extra-
polating optical data to zero frequency is hampered by noise. Hence,

Fig. 2 | Scaling of scattering rate and mass enhancement. a Temperature-
dependent resistivity measured in zero field (black) and at 16 teslas (red). The inset
emphasizes the linearity of the 16 T data at low temperature. The dashed line shows
ρ0 +AT with ρ0 = 12.2 μΩcm and A =0.63 μΩcm/K. b Scattering rate divided by
temperature plotted versus ω/T; the collapse of the curves indicates a behavior 1/
τ ~ Tfτ(ω/T). c Effective quasiparticle mass (in units of the indicated band mass m)
deduced from the low-temperature electronic specific heat47

[m*
Cp = ð3=πÞð_

2dc=k
2
BÞðC=TÞ] and zero-frequency optical mass enhancement; the

dashed lines indicate lnT behavior. dOptical mass minus the zero-frequencymass
shown in c plotted versus ω/T; the collapse of the curves indicates a behavior
m*(ω) −m*(0) ~ fm(ω/T). The data between0.22 and0.4 eV are shown asdotted lines.
ϵ∞ = 2.76 was used here as in Fig. 1.
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It seems that  m*/m from specific heat CV/T and from opNcs 
m*(0)/m are similar and divergent.   But in SFL m* is finite!

Actually there is a way out for SFL:
Different origin of diverging m*s

• CV/T ~ g ~ log(1/T) (from bosonic modes, see next slide)

• m*(0)/m comes from finite frequency fermionic  S(w,T)
which is quite similar to the MFL one at w>M/g⇒
m*(0)/m  diverges also in the SFL case….

Michon et al, Nat Commun. 2023

Remember: the equal slope of m*/m from CV/T and s(w,T) has been imposed in the experimental paper by 
choosing the total spectral weight (reasonable choice, but not mandatory…)



MAGNETORESISTANCE

First trivial/crucial remark: the T-linear resistivity and w/T scaling is due to the Bose 
statistics at T>w:
b(w)=1/(ew/T-1)~T/w ⇒ 1/t ~ T/w ImD(w)
By no means the magnetic field H can play the same role of T: no way to get 
1/t ~ (T2+H2), H/T scaling and so on

What experiments say?

P. Giraldo-Gallo et al. Science 2018, (LSCO)
Ayres, J. et al. Nature 2021, (Tl2201, Bi2201)
Hayes, I. M. et al., Nat. Phys. 2016 (pnicQdes)

1/t ~ max[T,H] ~ (T2+H2), near a criQcal doping value

Ataei et al. Nat. Phys. 2022
The scaZering rate is the sum of an elasQc (T-independent) 
anisotropic term and an inelasQc (T-dependent) isotr. term: 
1/τ (φ, T) =c[ 1/τ0 + 1/ τaniso |cos(2φ)|ν]+αkBT/ħ. 

`the behaviour of electrons in a magneQc field in these strange 
metals is enQrely the result of their orbital moQon, and there is 
no evidence that the scaZering rate has any field dependence.’⇒

The H-linear dependence at low T is accounted for by Boltzmann theory, given the strongly 
anisotropic elastic scattering rate 



1/τ (φ, T) =c[ 1/τ0 + 1/ τaniso |cos(2φ)|ν]+αkBT/ħ. 

At low T the elastic scattering dominates
At higher T the inelastic part dominates and H2 magnetoresistance is recovered

Low T 

Nature Physics | Volume 18 | December 2022 | 1420–1424 1421
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magnetism21 (Fig. 1a). Its superconductivity can be entirely sup-
pressed by applying a magnetic field in excess of 20 T. Its resistiv-
ity is perfectly T-linear down to the lowest temperature (T ≈ 1 K)7. 
Thermal conductivity measurements down to 50 mK have shown this 
T-linearity to persist down to T = 0 (ref. 22). Nd-LSCO is an archetypal 
strange metal, with a simple quasi-two-dimensional (2D) single-band 

theory of electron motion in a magnetic field providing all electronic 
parameters are known. Here we carry out such a comparison in detail 
for two closely related strange metals: the cuprates La1.6−xNd0.4SrxCuO4 
(Nd-LSCO) and LSCO, at a hole concentration (doping) of p = 0.24.

At that doping, Nd-LSCO is in its purely metallic phase, with-
out pseudogap16–18, charge-density wave modulations19,20 or static 
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Fig. 1 | Cuprate phase diagram and T-linear resistivity in Nd-LSCO and LSCO. 
a, Schematic temperature-doping phase diagram of the cuprate Nd-LSCO, 
showing the pseudogap phase (PG)16, the superconducting phase in zero field 
(SC), the charge-density-wave region (CDW)12,19,20 and roughly the region of 
strange metal behaviour (SM), distinct from the Fermi-liquid behaviour (FL).  
b, Temperature dependence of the in-plane resistivity ρ (J∥a) in a magnetic field 
B = 16 T normal to the copper oxide planes (B∥c), for our three cuprate samples, 

all with doping p = 0.24: Nd-LSCO (red), LSCO S1 (green) and LSCO S2 (blue).  
All three exhibit a perfect T-linear dependence below T ≈ 70 K, with a very similar 
slope. The residual resistivities extrapolated from a linear fit in the interval 
20–70 K (dotted lines) are ρ0 = 28, 12 and 48 µΩ cm, respectively. The drop in  
ρ to zero below 10 K is due to superconductivity, not entirely suppressed at this 
relatively low field.
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Fig. 2 | Field dependence of resistivity at various temperatures. Measured 
and calculated MR, plotted as ρ(B)/ρ(0) versus B, for J∥a and B∥c, at various fixed 
temperatures, as indicated. a, Isotherms measured in Nd-LSCO up to 85 T, for 
T = 4 K (blue), 40 K (green) and 100 K (red). The MR at 4 K is seen to be linear in 
a field above ~40 T, whereas the MR at 100 K is quadratic, as emphasized by the 
linear (dashed) and quadratic (dashed dotted) lines. b, Calculated MR using the 

parameters for Nd-LSCO extracted from a previous ADMR study3, for the same 
three temperatures. c, Isotherms measured in LSCO S1 up to 65 T, for the same 
three temperatures as in a. d, Calculated MR at T = 4 K, using the full scattering 
rate of Nd-LSCO, given in equation (1) (red, same as in a), and using only the 
isotropic part of that scattering rate (blue). The parallel dashed lines are linear,  
to emphasize the loss of B-linearity in the isotropic case.
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SFL vs MFL comparison
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SFL has an almost scaling form when M/g(T)→0

FL for w<M/g

from a quadratic to a logarithmic regime, an approximately linear dependence
in the crossover between the two regimes can be observed. What is interesting
is that the slope of the linear part of this function does not depend on �. The
linear regime of Im⌃(!, T = 0) is clearly visible around its inflection point, which
occurs at ! = M/�. The equation of the tangent line at this point is:
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The slope of this line is clearly independent of �. It is interesting to note that,
at fixed T = 0, the real part of the self-energy can be exactly computed with
Kramers-Kronig relation:
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For the sake of completeness, we include the frequency cutoff !c, then we will
take it to infinity in the last expression. As we shall see, the expression we get
in the !c ! 1 limit is regular. For ! > !c the result is:
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As we expect, this object goes to zero in the ! ! 1 limit. For ! < !c, which is
the regime of our interest, the result is:
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Since !c is much bigger than all other characteristic scales of the system we can
consider the limit !c ! 1, which leads to the following result:

Re⌃(!, T = 0) = �g2N0
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From which we can easily compute the quasiparticle weight:
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Which is a particularly interesting result as it shows that the quasiparticle weight
is completely independent of �. This would imply that the fermionic specific
heat is not renormalized by � at low temperature.

Zero frequency
We can apply a similar procedure by fixing ! = 0 in expression (6), in order to
explore the low temperature asymptotic behavior:
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Since the result of the integral at T = 0 (and � ! 1) is finite (it equals to ⇡2/2)
we deduce that the leading term of |Im⌃(! = 0, T )| at low temperature is:
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Again, the asymptotic expression for (1) within the very same conditions is the
following:

|Im⌃(! = 0, T )| = ↵2
T

↵M

M

2�

⇣�kBT
M

⌘2

And again, we get the following constraint on the coupling constants:
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These constraints allow us to fix two out of three coupling constants. If we
choose, for instance, ↵M as a free parameter, then ↵! and ↵T are given by:
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mQP* =m/Z  is finiteCrucial difference for SFL:

MFL
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Standard MFL w/T scaling form
MFL has divergent QP mass mQP*~log(1/T)
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Supplementary Note 1

Calculation of the self-energy

We carried out a perturbative calculation of the self-energy corrections of the fermion

quasiparticles using the Feynman diagram of supplementary figure 1, where the solid line

represents a bare quasiparticle, and the wavy line may alternatively represent a CDF or a

CDW collective excitation.

Supplementary figure 1. Feynman diagram of the electron self-energy at the lowest

perturbative order. The solid lines represent the electron propagator, while the wavy line

represents either the CDF or the CDW correlator.

The analytic expression for the (retarded) imaginary part is (see supplementary reference

1)

Im⌃(k,!) = �g2
Z

d2q

(2⇡)2
(1)

⇥ (! � "k�q)[b("k�q) + f("k�q � !)]

[!0 + ⌫̄ ⌘q � (! � "k�q)2/⌦]2 + (! � "k�q)2
exp(�⌘q/⇤),

where b(z) = [ez/kBT � 1]�1 is the Bose function, f(z) = [ez/kBT +1]�1 is the Fermi function,

g is the coupling between electrons and CDFs or CDWs, and (2⇡)2⌘q = 4� 2 cos(qx�Qc
x)�

2 cos(qy � Qc
y) contains the information about the CDW/CDF vector Qc. The function

⌘q is scaled by 1/(2⇡)2 because in the fit to RXS the wavevector is defined in r.l.u. (see

supplementary note 2). For the evaluation of �⌃ we sum over all 4 equivalent wavevectors

(±Qc, 0) and (0,±Qc), with Qc ⇡ 0.3 r.l.u. Following supplementary reference 1, we in-

troduce an exponential cuto↵ which accounts for the suppression of the coupling between

CDFs/CDWs and quasiparticles away from Qc: ⇤ = 0.1 for CDF scattering and ⇤ = 0.5

for CDW scattering. The electron dispersion "k is taken from supplementary reference 2.

In supplementary figure 2 we show that the scattering due to CDFs stays isotropic even

for electron states away from the Fermi surface.
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Question: Why should g grow large? And why should g~log(1/T)?
EXTRINSIC MECHANISM
A model (for 2D only)  [MG, C. Di Castro, G. Mirarchi, G. Seibold, S. Caprara Symmetry 15, 569 (2023)]

At low energy and T the CDF can decay 
in a diffusive p-h mode
In 2D the damping g has a log renormalization

The g grows ~log (1/T)

3

temperature logarithmic growth of the specific heat ra-
tio CV /T , providing a possible realization of the strange
metal scenario described in Ref. 32.
In the standard theory of disordered electron

systems35,36, a di↵usive collective mode is obtained by
a ladder resummation of impurity scattering events [the
dotted lines in Fig. 1 (d)], so that the density-density re-
sponse function takes the form of a di↵usive pole

�(q,!n) = h⇢(q,!n)⇢(�q,!n)i =
N0Dq2

Dq2 + |!n|
, (2)

where q is the wave vector, q ⌘ |q|, D is the di↵usion
constant, and N0 the quasiparticle density of states at
the Fermi level. These density fluctuations keep their
singular di↵usive form as long as Dq2 is larger than T
and smaller than the elastic scattering rate on quenched
impurities 1/⌧ .
It is worth noticing that the di↵usive character of the

low energy electronic modes is by no means a property of
strongly disordered systems: any standard Drude metal
with (even small) amount of impurities has a finite con-
ductance due to impurity scattering and the electrons (or
quasiparticles) at energy smaller than 1/⌧ di↵use rather
than propagate ballistically. Moreover, many strongly
correlated systems, despite their (strange) metallic char-
acter, always display a non negligible elastic impurity
scattering. Cuprates, for instance have impurity scatter-
ing rates of the order of a few tens of meV, such that
T < 1/⌧ essentially over the whole phase diagram.

To describe an equilibrium situation, where an OPF
decays into di↵using p-h pairs, which in turn form back
an OPF, we introduce a phenomenological coupling g
between an OPF (centered at R = 0) and the di↵usive
density fluctuation

Scoupl = gT
X

n

�(R = 0,!n)
X

q

⇢(q,!n). (3)

This simplified model has the advantage of being exactly
solvable, while keeping all the main ingredients to access
the physical scenario of an increasing dissipation of the
OPFs, due to the coupling to other degrees of freedom.
The coupling between OPFs and di↵usive modes dresses
the OPF propagator with the self-energy graphically rep-
resented in Fig. 1 (e),

⌃(!n) = g2N0

Z Qmax
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d2q

4⇡2

Dq2
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=
g2N0

4⇡D
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d(Dq2)
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1� |!n|

Dq2 + |!n|

◆

= �M � |!n|��. (4)

As usual, the upper momentum cuto↵ in the di↵usion
processes is given by the inverse mean free path Qmax =
`�1, which can then be translated into an energy cuto↵
for the di↵usive modes ⇤max ⌘ DQ2

max = 1/⌧ . The
lower cuto↵ is instead provided by the temperature T ,

as long as T < 1/⌧ . The first term in Eq. (4) is a finite
correction to the energy scale M , which is immaterial in
the forthcoming discussion. Expanding to first order in
|!n| the last term in Eq. (4), one obtains a correction to
the dissipation coe�cient �,

�� = � � �0 = A logmax [(⌧T )�1, 1], (5)

where �0 is the damping coe�cient in the absence of
coupling to di↵usive modes and A ⌘ g2N0/(4⇡D) is a
dimensionless e↵ective coupling constant. This result re-
markably shows that the di↵usive channel induces a log-
arithmic increase of the dissipation parameter � when T
decreases. Since within a phenomenological approach it
was previously shown that this leads to the same log-
arithmic divergence of CV /T 32,33, this result provides
a microscopic mechanism accounting for this divergence
without any divergence of the correlation length ⇠. This
naturally raises the issue of the role of the nearby QCP.
In particular, one can notice that Eq. (5) does not ex-
plicitly involve the parameter x tuning the proximity
to the QCP, nor the correlation length characterizing
the OPFs. We therefore need to equip our microscopic
model with phenomenological assumptions to determine
the range in x where the above di↵usive decay chan-
nel becomes e↵ective. First of all, we consider the con-
dition that, when the OPF has a characteristic energy
M/�0 > 1/⌧ , it can only decay in ballistic p-h pairs and
therefore g = 0. Since the short-range fluctuations are
the 2D precursors of the nearby QCP, the correlation
length will increase for x approaching xc and the decay
in di↵usive p-h pairs sets in when the tuning parameter
of criticality x is such that ⌫⇠�2 ⇡ M0(x � xc) < �0/⌧ ,
i.e., x < xDMD ⌘ xc + �0/(⌧M0) (DMD stands for dif-
fusive mode decoupling). This sets the maximum dis-
tance from the QCP above which � ⇡ �0. On the
other hand, our arguments (nearly-independent OPFs,
short correlation length ⇠) fail when one approaches the
QCP, where the physics is ruled by a diverging correla-
tion length ⇠ and the standard Hertz-Millis picture37,38 is
recovered. Therefore, we are led to assume that the di↵u-
sive modes decouple from the OPFs for (xc <)x < xQCR

(QCR stands for quantum critical regime), giving rise to
a negligible g ⇡ 0. Then, Eq. (3) only holds in range
xQCR < x < xDMD.

We point out that the crossover from this regime to
the standard Hertz-Millis criticality is not captured by
our simplified description. It definitely requires the in-
clusion of the self-interaction of OPFs. Furthermore, one
can conceive a scenario where the short-ranged OPFs de-
scribed within our approach coexist with nearly-critical
(à la Hertz-Millis) fluctuations, and the short-ranged
OPFs never become long-ranged. This seems exactly to
be what is observed in cuprates, where resonant inelas-
tic X-ray scattering experiment27 highlighted the coexis-
tence of fluctuating nearly-critical charge density waves,
associated with the 3D ordered phase, and much shorter
ranged CDFs, that can be interpreted as the remnant of
a (missed) 2D criticality28.

2

observed logarithmic divergence of the CV /T ratio. The
question remained open about the microscopic mecha-
nisms inducing the required increase of dissipation. The
present work addresses precisely this issue and provides
a possible explanation in terms of coupling between the
OPFs and the di↵usion modes of electrons in two dimen-
sions.
To be clear, we point out at the outset that disorder is

not the mechanism responsible for strange metal proper-
ties. These are due to the low energy (smaller than T )
and abundance of OPFs in the proximity of a QCP (in
turn, related to the electron-electron interactions driv-
ing the FL unstable, and to the low dimensionality). We
just shift our focus from a diverging correlation length to
an increasing dissipation that renders the OPFs slower
and slower, thereby extending strange metallicity down
to lower and lower temperatures. Impurity scattering,
without implying any localization or strong disorder ef-
fect, just changes the character of electron propagation
at low energy, thereby increasing the dissipation e↵ect.
The paradigmatic shift we propose is not academic,

rather it faces a theoretical di�culty of non-FL theo-
ries based on the proximity to a QCP characterized by
OPFs with a finite characteristic wave vector Qc. In such
theories, the scattering is extremely anisotropic on the
Fermi surface, and the FL character of the quasiparticles
is spoiled only at isolated points, the so-called hot spots,
while scattering at all other points of the Fermi surface
is FL-like at su�ciently low-energy, short-circuiting the
non-FL behavior at the hot spots34. Our proposal was
shown to lead to isotropic marginal-FL behavior29 and
the e↵ect that the scattering stays isotropic at the Fermi
surface, while the scatterer acquires a su�ciently low en-
ergy to give rise to an extended linear-in-T resistivity, is
achieved by an increasing dissipation32,33.

The structure of the paper is the following. In Sec. II
we introduce a model for the coupling of OPFs and elec-
tron density di↵usive modes, that is simple enough to be
exactly solvable, and yet includes all the main physical
ingredients leading to an enhancement of damping of the
OPFs due to the coupling to other degrees of freedom. In
Sec. III and Sec. IV, respectively, we discuss the specific
heat and resistivity of cuprates from the point of view
of our scenario. Our concluding remarks are found in
Sec.V.

II. THE ORDER PARAMETER
FLUCTUATIONS - DIFFUSIVE MODES MODEL

Taking the CDFs observed in cuprates27 as a paradig-
matic example in which the forthcoming assumptions fol-
low from a description of the experimental data, we con-
sider a regime in which the OPFs have a rather short
correlation length, ⇠/� ⇠ 1 � 2 (� is their characteristic
wavelength), by requiring that the system is at a finite
distance from the QCP at x = xc. In this regime the
fluctuations are largely independent from each other and

FIG. 1. Spectral density of the OPF propagator (a) and
sketch of the coupling (b-d) between the OPFs (wavy lines)
and the p-h di↵usive modes (zigzag lines). The solid dots
represent their e↵ective coupling g entering in Eq. (3). (b)
High-energy regime in which the OPF decays into a ballistic
p-h pair; (c) low-energy regime in which the OPF decays into
a di↵usive p-h pair. The blue rectangle represents the infinite
series of elastic scattering on quenched impurities represented
by dotted lines in (d); (e) self-energy diagram for the exact
solution of the model.

have a nearly-local character, so that they can be repre-
sented by a local field at the origin, �(R = 0). Accord-
ingly, the propagator of these fluctuations has the typical
form of an overdamped oscillator

D0(!n) = (M + �|!n|)�1 , (1)

where !n is the Matsubara frequency, � is a dimensionless
parameter measuring the damping strength due to the
decay of the OPFs into particle-hole (p-h) pairs (Landau
damping), the energy scale M = ⌫⇠�2 stays finite, and
⌫ is an electron energy scale (we adopt units such that
the Planck constant ~ and the Boltzmann constant kB
are set equal to 1, so that angular frequencies, energies,
and temperatures have the same units). By analytically
continuing to real frequencies, i!n ! ! + i0+, one can
obtain the spectral density of the OPFs, which is broad
and peaked at ! ⇡ M/�, as depicted in Fig. 1(a).

Depending on the typical energy M/� of the decaying
fluctuation, the particle and the hole can propagate as
ballistic particles when their energy (of order M/�) is
larger than 1/⌧ , the elastic scattering rate of the charge
carriers on quenched impurities [Fig. 1 (b)]. On the other
hand, when the fluctuation has a lower energy, M/� <
1/⌧ , a new decay channel opens, with electrons having
a di↵usive character, as long as T < 1/⌧ (for T > 1/⌧
the electrons and the holes are in a quasi-ballistic regime,
but the OPFs remain in a classical regime). In this latter
case, one can think the nearly-local OPF to decay into a
p-h di↵usive mode [Fig. 1 (c)]. We will show that this dif-
fusive decay channel of the OPFs triggers the growth of
� and creates the condition to extend the strange metal
behavior down to the lowest temperatures and a low-

CDF CDF

Diffusive mode (pole)

CDF
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No strong disorder, 
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a Drude metal



Why the model works only in 2D?

Still….in some systems around p* the system does become increasingly anisotropic (2D)
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field dependence of the negative MR is approximately
linear and there is no sign of saturation up to 60 T.

When the temperature dependence of the resistivity in
high magnetic fields is plotted in Fig. 1, several features
become evident. First, as expected, the high-field data
provide an extension of the zero-field normal-state data
to lower temperatures. This is particularly evident in the
20 T data [(+) in Fig. 1]. The rc data at the highest
fields lie below the zero-field data above Tc, due to
the large negative MR previously mentioned. Turning
attention to the low-temperature behavior of the 60 T data,
rab for both samples A and B show distinct upturns at
low temperatures, which, coupled with the diverging rc,
suggests that the normal state is insulating in all directions
in these samples. Note that the upturn is larger and begins
at a higher temperature in the more disordered sample.
Note also that the observation of an upturn in sample
B indicates that a linear-T behavior above Tc does not
guarantee metallic in-plane transport below Tc, even when
there is no sign of carrier localization above Tc.

The most striking result of the high magnetic-field
measurements is seen in sample C. In this sample,
rab stays metallic down to the lowest experimental
temperature, 0.66 K, and rc continues to diverge. In
sample C, therefore, the contrasting behavior in rab and
rc persists down to TyTc ≠ 0.05. This strongly sug-
gests that the metallic in-plane conduction and semicon-
ducting out-of-plane conduction can indeed coexist in the
zero-temperature limit when in-plane disorder is suffi-
ciently small. Note that rab in sample C becomes as
small as 74 mV cm, which corresponds to kFl . 42 in
the 2D model (kFl ≠ hc0yrabe

2, where c0 ≠ 12 Å is
the interlayer distance). Recalling the uncertainties in the
absolute magnitude of rab , we estimate kFl . 40 6 20
for sample C. The data suggest that rab is saturating to
a residual resistivity, although we cannot exclude the pos-
sibility that rab will cross over to insulating behavior be-
low our experimental temperature range. Ordinarily, such
a large value of kFl would assure metallic behavior to ex-
tremely low temperatures.

Figure 3 shows a log T plot of rab and rc from sam-
ple C for various fixed magnetic fields in order to em-
phasize the low-temperature behavior. The large negative
MR in rc is evident, and rc diverges roughly logarith-
mically (or sublogarithmically) at low temperatures, com-
parable to the behavior reported in La22xSrxCuO 4 [10].
On the other hand, rab below Tc shows almost no tem-
perature dependence and little magnetoresistance in this
cleanest sample. This suggests that the c-axis transport
is uncorrelated with the in-plane transport. This behavior
of Bi-2201 contrasts strongly with that of La22xSrxCuO 4,
where rab becomes insulating whenever rc is diverging
at low temperatures [10,11]. Figure 4 shows the tempera-
ture dependence of the anisotropy ratio rcyrab for the
three samples. The rcyrab value for sample C is compa-
rable to that previously reported for Bi2Sr2CuOy [8]. The
lower values for samples A and B are due to the larger

FIG. 3. log T plot of rab and rc of sample C for fixed
values of magnetic field, emphasizing the metallic rab and
diverging rc in the zero-temperature limit. rc data are divided
by 2 3 104.

rab in the more disordered samples. It is clear that, for
all three samples, rcyrab continues to increase below Tc,
another indication that the unusual two-dimensional na-
ture of the anisotropic resistivity exists well below Tc.
This behavior is also in distinct contrast to underdoped
La22xSrxCuO 4, for which rcyrab becomes constant at
low T [10]. The differences between the two systems
may be due to the much higher anisotropy of Bi-2201.

Now let us discuss the implication of these results. Ex-
perimental evidence in the literature points toward inco-
herent c-axis transport, except in very overdoped cuprates
[2], mostly because rc exceeds the Mott limit [3]. Within
the framework of Fermi-liquid theory, several models
have been proposed to explain this incoherence, including

FIG. 4. Temperature dependence of the normal-state
anisotropy ratio. Solid lines are zero-field data; crosses are
20 T data; circles are 50 T (sample C) and 60 T (samples A
and B) data.
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FIG. 1. Inset gives the Tc (midpoint) versus Sr concentration,
x, for the La22xSrxCuO4 single crystals studied. The size of
the circles gives the typical superconducting transition width
(90%–10%), where vertical bars indicate broader transitions.
(a) rab for five samples of different x. The lines/symbols
are 0 T/60 T data for x ≠ 0.08 (circles), 0.12 (diamonds),
0.15 (down triangles), 0.17 (up triangles), and 0.22 (squares);
(b) close-up of the insulator-to-metal crossover at x . 0.16 and
apparent kFl , 13; (c) raw rab versus H traces for the x ≠
0.15 sample, showing clear insulating behavior at H ≠ 60 T
for T , 30 K.

(typically 1.5 Aycm2) is kept within the ohmic range
of the normal-state resistivities. The magnetic field H

is applied along the c-axis to most effectively suppress
superconductivity, and the isothermal rsHd is recorded
by a transient digitizer monitoring the fast (10 ms) output
of a lock-in amplifier driven at ,120 kHz. Despite
the transient nature of the magnetic field, the samples
are sufficiently small that the data are not adversely
affected by eddy-current heating during the relatively long
,100 ms magnetic-field pulse.

To determine the temperature dependence of the
normal-state resistivity below Tc, each sample is subject
to a series of (typically twenty) 61-T magnetic-field
pulses at different temperatures. The symbols in Figs. 1
and 2 represent the rab and rc measured at 60 T. For
most of the samples studied, the magnetoresistance of the
normal state is small on the scale of Figs. 1 and 2, as
evidenced by the general accord between the zero-field
and 60-T data well above Tc. The scatter in the 60-T

FIG. 2. rc for five samples of different x. The lines/symbols
are 0 T/60 T data for x ≠ 0.12 (circles), 0.13 (diamonds), 0.15
(down triangles), 0.17 (up triangles), and 0.22 (squares). The
x ≠ 0.13 data are from Ref. [16]. The inset shows the low-
temperature saturation of the anisotropy ratio.

data [particularly evident in Fig. 1(b)] results from the
(few mV) noise in the pulsed-magnetic-field environment.
Despite these uncertainties, the raw rabsHd data for
x ≠ 0.15 [Fig. 1(c)] clearly show insulating behavior in
the normal state for T , 30 K, whereas the x ≠ 0.17
data appear to saturate at a finite conductivity. For many
samples near optimum doping (x . 0.16), even 61–T is
unable to completely suppress superconductivity and the
onset of the superconducting transition is visible at the
lowest temperatures in Figs. 1 and 2.

There are several striking features in the data of Fig. 1.
The first is that all samples exhibit metallic behavior
above Tc in zero magnetic field and yet every one of the
underdoped samples exhibits insulating behavior once su-
perconductivity is suppressed. Second, the IM crossover
in rab [expanded view in Fig. 1(b)] occurs between x ≠
0.15 and 0.17, very near the Sr concentration correspond-
ing to optimum Tc. In every underdoped sample, except
at x ≠ 0.12 [14], both rab and rc show no evidence of
saturation at low temperatures and diverge as the loga-
rithm of the temperature [16]. This suggests an unusual
insulating ground state in LSCO which extends up to op-
timum doping.

Figure 2 contains rcsT d data which show that the
IM crossover in rc occurs between x ≠ 0.15 and 0.17,
just as in rab . In every LSCO sample studied, the low
temperature rab and rc are either both insulating or both
metallic, despite the contrasting behavior which is often
observed above Tc. There is further evidence that the
low-temperature rab and rc are related; the anisotropy
ratio rcyrab saturates at low temperatures for all Sr
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FIG. 1. Comparison of doping dependence of various quanti-
ties in LSCO. (a) Magnetic correlations: T� (triangles) is the
temperature at which the magnetic susceptibility of polycrys-
talline samples is maximum, from a fit to 2D AFM response;
at large doping, a Curie component (maximum at T = 0) of
magnitude C (circles) dominates [41]. TZn (squares) is the
temperature at which spin freezing becomes apparent in µSR
measurements of LSCO doped withe 1% Zn [42]. (b) EAN

(squares) is the e↵ective antinodal (pseudogap) energy from
angle-integrated photoemission measurements [43]; circles in-
dicate 1/⇢c(T = 50K) [32]. (c) Inverse square of the magnetic
penetration depth in the low T limit (circles), which is pro-
portional to the superfluid density [37]. (d) Tc determined by
the midpoint of the Meissner magnetization [44]. The vertical
dashed line (solid line) indicates p⇤ (pc); solid lines emphasize
the trends of the data with doping.

at p ⇠ 1
8 , where the charge-stripe period is 4a, with

a ⇡ 3.8 Å being the Cu-Cu lattice spacing [45–47]. The
strength of the dynamic spin-stripe scattering decreases
with continued doping [32, 48], consistent with the idea
that holes added beyond p ⇠ 1

8 tend to go into uniformly-
doped regions. As already mentioned, this process hap-
pens in an inhomogeneous environment of randomly po-
sitioned dopant ions that are poorly screened [20, 31, 32],
so that at any particular average doping value, there is a

distribution of local doped-hole concentrations. Within
this evolving environment, there must be a percola-
tion threshold, below which stripe correlations are con-
tinuously connected across a CuO2 plane, whereas, at
large p, stripe correlations are restricted to finite pockets
and uniformly-doped regions percolate across each plane.
(Here we emphasize percolation at T = 0 rather than
T ⇠ Tc, as considered elsewhere [49, 50].)

To demonstrate that the stripe percolation limit cor-
responds to p⇤, we consider practical measures of the
doping dependence of spin correlations. One is pro-
vided by the magnetic susceptibility. For isolated spins,
the susceptibility follows the Curie behavior, grow-
ing with cooling as 1/T ; however, for a network of
antiferromagnetically-coupled spins, the susceptibility
decreases as correlations grow beyond nearest neighbors
[51]. The magnetic susceptibility data measured on poly-
crystalline samples of LSCO show, in the underdoped
regime, a peak at a temperature T�, with a decrease at
T < T� [41], as shown in Fig. 1(a). It is observed that
T� drops as p ! p⇤, consistent with the approach of an
antiferromagnetic system to a percolation limit. Beyond
that point, a Curie-like component develops [41, 52], as
one would expect in a system in which antiferromagnetic
correlations are limited to finite grains [53].
Another probe of the spin-stripe correlations is pro-

vided by substitution of a small fraction (1%) of Zn
for Cu. Neutron scattering measurements have demon-
strated that Zn-doping enhances spin-stripe order [54,
55]. The temperature TZn at which the spin correlations
begin to freeze has been measured as a function of dop-
ing by muon spin-rotation spectroscopy [42]; as one can
see in Fig. 1(a), TZn drops toward zero at p⇤. (Related
results have been reported for Zn-doped YBa2Cu3O6+x

[10, 56].) This is consistent with a picture in which dy-
namic correlations that percolate across the sample can
be pinned by Zn defects, but the pinning is no longer
e↵ective beyond the percolation threshold.
Without Zn, a gap develops in the spin-stripe excita-

tions at T < Tc for x & 0.13 [57]. Applying a magnetic
field along the c axis depresses the superconductivity and
can decrease the spin gap. Recent nuclear magnetic reso-
nance studies using very high magnetic fields have shown
that the ability to induce a quasistatic magnetic order
disappears at p ⇠ p⇤ [58, 59], again consistent with the
percolation scenario.
Local antiferromagnetic spin correlations associated

with spin stripes strongly scatter the electronic excita-
tions with wave vectors near (⇡/a, 0) and (0,⇡/a) [36, 60]
that correspond to the “antinodal” (AN) region, where
the superconducting d-wave gap (in principle) has its
maximum. The resulting damping causes a shift in the
e↵ective peak energy, EAN, detected by photoemission
in this region [43, 61, 62]; EAN decreases with doping,
as shown in Fig. 1(b), in a fashion that correlates with
the approach to the stripe percolation limit. The ap-
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In the standard theory of disordered electron systems [37], a diffusive collective mode
is obtained by a ladder resummation of impurity scattering events [the dotted lines in
Figure 1d], so that the density–density response function takes the form of a diffusive pole

c(q, wn) = hr(q, wn)r(�q, wn)i =
N0Dq

2

Dq2 + |wn|
, (2)

where q is the wave vector, q ⌘ |q|, D is the diffusion constant, and N0 the quasiparticle
density of states at the Fermi level. These density fluctuations keep their singular diffusive
form as long as Dq

2 is smaller than the elastic scattering rate on quenched impurities 1/t.
It is worth noticing that the diffusive character of the low-energy electronic modes is

not a property of strongly disordered systems: any standard Drude metal with (even small)
amount of impurities has a finite conductance due to impurity scattering, and the electrons
(or quasiparticles) at energy smaller than 1/t diffuse rather than propagate ballistically.
Moreover, many strongly correlated systems, with their (strange) metallic character, always
display a non-negligible elastic impurity scattering. Cuprates, for instance, have impurity
scattering rates of the order of a few tens of meV, such that T < 1/t essentially over the
whole phase diagram.

To describe an equilibrium situation, where an OPF decays into diffusing p–h pairs,
which in turn form back an OPF, we introduce a phenomenological coupling g between an
OPF (centered at R = 0) and the diffusive density fluctuation

Scoupl = gT Â
n

F(R = 0, wn)Â
q

r(q, wn). (3)

This simplified model has the advantage of being exactly solvable while keeping all the main
ingredients to access the physical scenario of an increasing dissipation of the OPFs, due to
the coupling to other degrees of freedom. The coupling between OPFs and diffusive modes
dresses the OPF propagator, Equation (1), with the self-energy graphically represented in
Figure 1e,

S(wn) = g
2
N0

ˆ
Qmax

Qmin

d2
q

4p2
Dq

2

Dq2 + |wn|

=
g

2
N0

4pD

ˆ Lmax

Lmin

d(Dq
2)

✓
1 � |wn|

Dq2 + |wn|

◆
= dM � |wn|dg. (4)

As usual, the upper momentum cutoff in the diffusion processes is given by the inverse
mean free path Qmax = `�1, which can then be translated into an energy cutoff for the
diffusive modes Lmax ⌘ DQ

2
max = 1/t. For the lower cutoff, Lmin, we will consider

two possibilities: (i) either it is provided by the temperature T, as long as T < 1/t, i.e.,
Lmin ⌘ min (T, Lmax), (ii) or we set Lmin = 0, given that the logarithmic divergence
in Equation (4) is anyway cutoff by the term |wn| in the denominator. The first term
in Equation (4) is a finite correction to the energy scale M, which is immaterial in the
forthcoming discussion. Hereafter, we will examine the two possibilities, (i) and (ii), for the
lower cutoff, showing that the resulting scenario is essentially the same.

In case (i), expanding to first order in |wn| the last term in Equation (4), one obtains a
correction to the dissipation coefficient g,

dg = g � g0 = A log max [(tT)�1, 1], (5)

where g0 is the damping coefficient in the absence of coupling to diffusive modes and
A ⌘ g

2
N0/(4pD) is a dimensionless effective coupling constant. Therefore, the diffusive

channel induces a logarithmic increase in the dissipation parameter g when T decreases.
As it was previously shown [35,36], a logarithmically divergent g leads to a logarithmic
divergence of CV/T with a finite correlation length x.

CDF The self-energy of CDF due to 
diffusive modes is only singular 
in D=2
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In the standard theory of disordered electron systems [37], a diffusive collective mode
is obtained by a ladder resummation of impurity scattering events [the dotted lines in
Figure 1d], so that the density–density response function takes the form of a diffusive pole

c(q, wn) = hr(q, wn)r(�q, wn)i =
N0Dq

2

Dq2 + |wn|
, (2)

where q is the wave vector, q ⌘ |q|, D is the diffusion constant, and N0 the quasiparticle
density of states at the Fermi level. These density fluctuations keep their singular diffusive
form as long as Dq

2 is smaller than the elastic scattering rate on quenched impurities 1/t.
It is worth noticing that the diffusive character of the low-energy electronic modes is

not a property of strongly disordered systems: any standard Drude metal with (even small)
amount of impurities has a finite conductance due to impurity scattering, and the electrons
(or quasiparticles) at energy smaller than 1/t diffuse rather than propagate ballistically.
Moreover, many strongly correlated systems, with their (strange) metallic character, always
display a non-negligible elastic impurity scattering. Cuprates, for instance, have impurity
scattering rates of the order of a few tens of meV, such that T < 1/t essentially over the
whole phase diagram.

To describe an equilibrium situation, where an OPF decays into diffusing p–h pairs,
which in turn form back an OPF, we introduce a phenomenological coupling g between an
OPF (centered at R = 0) and the diffusive density fluctuation

Scoupl = gT Â
n

F(R = 0, wn)Â
q

r(q, wn). (3)

This simplified model has the advantage of being exactly solvable while keeping all the main
ingredients to access the physical scenario of an increasing dissipation of the OPFs, due to
the coupling to other degrees of freedom. The coupling between OPFs and diffusive modes
dresses the OPF propagator, Equation (1), with the self-energy graphically represented in
Figure 1e,
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As usual, the upper momentum cutoff in the diffusion processes is given by the inverse
mean free path Qmax = `�1, which can then be translated into an energy cutoff for the
diffusive modes Lmax ⌘ DQ

2
max = 1/t. For the lower cutoff, Lmin, we will consider

two possibilities: (i) either it is provided by the temperature T, as long as T < 1/t, i.e.,
Lmin ⌘ min (T, Lmax), (ii) or we set Lmin = 0, given that the logarithmic divergence
in Equation (4) is anyway cutoff by the term |wn| in the denominator. The first term
in Equation (4) is a finite correction to the energy scale M, which is immaterial in the
forthcoming discussion. Hereafter, we will examine the two possibilities, (i) and (ii), for the
lower cutoff, showing that the resulting scenario is essentially the same.

In case (i), expanding to first order in |wn| the last term in Equation (4), one obtains a
correction to the dissipation coefficient g,

dg = g � g0 = A log max [(tT)�1, 1], (5)

where g0 is the damping coefficient in the absence of coupling to diffusive modes and
A ⌘ g

2
N0/(4pD) is a dimensionless effective coupling constant. Therefore, the diffusive

channel induces a logarithmic increase in the dissipation parameter g when T decreases.
As it was previously shown [35,36], a logarithmically divergent g leads to a logarithmic
divergence of CV/T with a finite correlation length x.
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of p. However, in those cases the task is more difficult because the
CDW peak at zero energy cannot be resolved from the CDF signal at
very low energy, being the respective critical wave-vectors almost
coincident (see Fig. 3d). Therefore we have studied the CDF far from
qCDF, where the CDW contribute negligibly to the scattering intensity,
i.e., along the (H,H) direction andon the tails of the (H,0) scan.Whatwe
can determine in this way isΩ, the bosonic characteristic energy of the
CDF previously mentioned. We expect Ω to be related to, and larger
than, the energy Δ at qCDF. For convenience, we assume that Ω is
constantwith respect to temperature, since theT-dependentω0 term
is little relevant in the expression of Ω for each doping p. Conse-
quently, the energy-integral of the quasi-elastic intensity far from
qCDF can be simply attributed to a bosonic distribution function of a
single characteristic energyΩ at all temperatures. Even before fitting
the experimental data we observe that the T dependence of the
intensity is very similar at all q positions along the (H,H) and that it
strongly depends on the doping level (see Fig. 4a, b). We fitted those
curves with a simple function A+ I0 1 + 2 eΩ=kBT ! 1

! "!1
h i

where I0 is
the CDF intensity at zero temperature and A accounts for the non-
CDF scattering contributions (see Methods and Supplementary
Fig. 4). We can thus be confident in using the same method at
intermediate doping. Interestingly,Ω is 15–20meV larger forp = 0.06

than for p = 0.19, which is close towhat we have also observed at qCDF
for Δ (see Fig. 4c).

The values of Δ, converted into kelvin, are shown in the phase
diagram of Fig. 4d for a set of YBCO, NBCO and Bi2212 samples,
including those previously used in ref. 26. Both below and above p*
these points line up with the border of the strange metal phase as
determined by transport24,41,42 (shaded regions in Fig. 4d) and define a
characteristic wedge with a minimum at p*.

Discussion
Thanks to an innovative analysis of RIXS data, applied to a large set of
measurements (6 doping levels, 3 families of samples, wide tempera-
ture range, high and low resolution in energy), we provide here a
consistent assessment of the doping and temperature dependences of
the CDF intensity and energy in superconducting cuprates. We find
that the CDF scattering intensity is strongest in proximity of p ~ 0.19
and at low T, while it fades both when increasing the temperature and
when moving the doping away from p*. Moreover, the energy
ΔðTmin,pÞ, i.e. the minimum of the parabolic relation for the CDF dis-
persion in the q-space, is lowest at p ~ 0.19, while it increases with
temperature at all dopings. The results are summarized in Fig. 4e,
where we depict the CDF dispersion relation using the propagator of
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Fig. 4 | Charge density fluctuations in the cuprate phase diagram. a The inte-
grated intensity measured on YBCO (p ≈0.06) is presented as a function of the
temperature for several momenta along the (H,H) direction. For each momentum,
the solid line represents the fit of the data assuming a Bose distribution function.
b Same as previous panel, on YBCO (p ≈0.19). c The energies Ω, determined from
the Bose fit on spectra measured along the (H,H) direction, are plotted together
with the energies Δ, directly measured at q = qCDF in the very high resolution
spectra. Here and in the next panel we consider the Δ valuemeasured at the lowest
temperature. The two NBCO samples are from Ref. 26. At any doping, Ω >Δ, as
expected when moving away from qCDF. As highlighted by the lines, which are

guides to the eye, both energies increase when decreasing the doping, with a
minimum at p =0.19. d The temperatures corresponding to the energies Δ are
presented as a function of doping p as filled symbols. In the constructed cuprate
phase diagram, we also show the temperatureTL, where the linear-in-T dependence
of the resistance, signature of the strange metal behavior, is lost in YBCO and
Bi221224,41,42. e In the p-T phase diagram, we have depicted the CDF dispersion
relation at three temperatures (T ≈ 20K, T ≈ 100K, T ≈ 300K) and doping levels
(p =0.06, p =0.19, p =0.22), using the propagator of Eq. (2) and the energy values
experimentally determined in this work.
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QUICK SUMMARY AND PERSPECTIVE: WHAT IS THE MAIN IDEA

x

A local order parameter fluctuation
embedded in a bath of fermionic quasiparticles

Similarities with 
• SYK model 

(Sachdev, Patel, Parcollet, Schmalian, Valentinis,…)
• Spin-Boson (Schmalian, Berg,…)

(also Cv=T log(1/T) from bosons) 
• Kondo-destruction  as if g~1/w1-a but x→∞

COMMON IDEA:  
let fermions interact with local d.o.f. at low-energy
(built-in in SYK models, due to Spin-Boson and CDF in the SFL model)

Proximity to a QCP to have abundant order parameter fluctuations. But stay away from it:
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Extended Data Fig. 2 | Characterization of our Eu-LSCO and Nd-
LSCO samples. a, Tc versus p for our Eu-LSCO samples. Tc is defined 
as the onset of the drop in the magnetization upon cooling. Error bars 
on Tc reflect the uncertainty in defining the onset of the drop in the 
magnetization. b, Same for our Nd-LSCO samples. c, ρ versus T in our 
Eu-LSCO samples with p = 0.21 (red) and p = 0.24 (blue), at H = 0 and 

H = 33 T (short section below 40 K). d, Same for our Nd-LSCO samples 
with p = 0.22 (red) and p = 0.24 (blue)2. The approximately linear ρ(T) 
as T → 0 at p = 0.24 (blue) shows that 0.24 is close to the critical point 
p* ≈ 0.23 in both materials. The large upturn in ρ(T) as T → 0 at p = 0.21 
and p = 0.22 (red) shows that the pseudogap has opened in both materials 
(at p < 0.23).
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Notice that the overall factor 2 is due to the spin multiplicity of the electrons. The integral
in dx can now be solved analytically. The resulting expression for the resistivity is

r =


e

2 eN(0)
ˆ +•

�•

1
|Im Sel(w, T)|

✓
�∂ f (w)

∂w

◆
dw

��1

,

which, in the T!0 limit, reduces to

r =
G0

e2 eN(0)
,

namely, the reciprocal of the product between eN(0) (which encodes all the information
about the currents, except for the spin) and twice the zero temperature scattering time t.
The behavior of this expression is shown in Figure A2, together with the experimental data
for La1.36Nd0.4Sr0.24CuO4, taken from Ref. [10].
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Figure A2. Plot of the resistivity as a function of temperature (solid line). Parameter values are
M =15 meV, n = 1.3 eV/(r.l.u.)2, W = 30 meV, A = 6.5, g = 5.5, g = 245 meV, G0 = 16 meV and
qC = 1.95 r.l.u. The symbols (triangles) represent the experimental values for La1.36Nd0.4Sr0.24CuO4,
taken from Ref. [10]. We use the notation r0 = h̄a/e

2.
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where ABP,NP are the intensities extracted from the fit of the RIXS data. While the main panel of Fig. 6 displays
the temperature dependence of the CDF (red symbols and lines) and CDW (blue symbols and lines) energy scales !0,
the inset reports the fitted intensity of the broad and narrow peaks as extracted from the quasi-elastic RIXS spectra.
Assuming that the coupling of the scattered photons with the collective modes is the same for CDFs and CDWs, the
di↵erence in the red and blue curves merely reflects the di↵erent volume fraction of the regions where CDFs (red) or
CDWs (blue) are present.

Once the above parameters are determined and the scattering rates are found from the calculation of the electron
self-energies (see below), the resistivity can finally be calculated. The results are displayed in Fig. 8.

A possible inhomogeneous scenario for magnetotransport in cuprates was recently proposed [11] and described
within the e↵ective medium theory, indicating that also magnetotransport experiments may provide evidence in favor
of inhomogeneous landscapes in these systems. The e↵ect of a magnetic field within our CDF/CDW scenario can be
studied along the same lines [38].

FIG. 8. Resistivity data and fit of an optimally doped (Tc = 90K) Nd1+xBa2�xCu3O7�� sample. The thick gray line is the
experimental curve, while the red solid line is the result of theoretical calculations with the CDF contribution only (as in
Fig. 3 of the main text). Below TCDW the additional scattering due to CDWs generically produce an increase of the resistivity
represented by the thick red-to-blue curve. Taking into account this additional scattering within the e↵ective medium theory
with the relative weights of CDFs and CDWs of Tab. I, the red dashed curve is obtained. The relative contributions of CDFs
and CDWs to the scattering rate along the Fermi surface and (mediated on the Fermi surface) as a function of T are reported
in the insets (b) and (c), respectively.

Of course our theoretical approach disregards the possible e↵ects of CDWs in inducing pairing (hence triggering
paraconductive fluctuations) and in modifying the quasiparticle spectrum leading to pseudogap opening and Fermi
surface modifications, that could account for the downward bending of the experimental resistivity, which is missed
by theoretical calculations.

B. Self-energy

We define the Green functions in the narrow and broad peak regions as

GBP (k,!) =
1

! � "k � ⌃BP (k,!)
(15)

GNP (k,!) =
1

! � "k � ⌃NP (k,!)
, (16)
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FIG. 9. Feyman diagram of the electron self-energy at the lowest perturbative order. The solid lines represent the electron
propagator, while the wavy line represents either the CDF or the CDW correlator. (a) Electronic self-energy at T > TCDW

(black and blue solid lines) where only the CDFs contribute to the quasiparticle scattering. The dashed red and green lines
report instead the self-energy for T < TCDW , where also the anisotropic scattering due to CDWs is present. The coupling
between fermion quasiparticles and CDFs (and CDW for T < TCDW ) is g = 0.188meV. The momentum is on the Fermi surface
along the diagonal (1,1) direction. (b) The rescaled self-energy has a characteristic collapse with a linear frequency dependence,
but with a larger slope for T < TCDW due to the additional CDW scattering.

where "k is the electron dispersion in the form of a tight-binding band structure as obtained from photoemission
experiments [21]. Of course the tight-binding parameters fitting the experimental dispersions already include the
e↵ect of the real part of the self-energy and therefore we use these values just as parameters representative of various
cuprates in order to get the right order of magnitude of the energy scales in our single-band e↵ective model.
We average Eqs. (15) and (16) to yield an e↵ective Green function

G
eff (k,!) = xNP GNP (k,!) + xBP GBP (k,!) ⌘

1

! � "k � ⌃eff (k,!)
, (17)

with xNP + xBP = 1. The last identity in Eq. (17) defines the e↵ective self-energy ⌃eff (k,!), which is then found by
means of Eqs. (15,16), yielding

⌃eff (k,!) = ! � "k �


xBP

! � "k � ⌃BP (k,!)
+

xNP

! � "k � ⌃NP (k,!)

��1

(18)

The results are shown in Fig. 9.
It is clear that the self-energy has a characteristic MFL behaviour up to energies of order 0.1-0.15 eV, with a linear

frequency dependence saturating at constant values at low frequency. These constant values increase with T , again
according to the customary MFL behaviour. We notice, however, that, while the self-energy above TCDW , due to the
large width in momentum of the CDFs scatterers is nearly the same over the whole Fermi surface, the self-energy
below TCDW changes along the Fermi surface due to the anisotropic CDW scattering, thereby violating the canonical
MFL behaviour.

When both CDW and CDF are present (UD samples) 

The inhomogeneous mixture of CDW and CDF  is 
treated:
- summing the two scattering channels (Mathiessens
rule)
- with Effective medium theory EMT

Seibold et al., arXiv:1905.10232



This expression at T = 0 gives exactly the same result as before, which is the
correct one. At ! = 0 we get:
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And now, the asymptotic behaviors in temperature are:
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Which are the correct ones. It is not possible to analytically make Re⌃(!, T )
explicit by applying the Kramers-Kronig relation to the expression (10), however
since we are only interested in the renormalization of the mass we can directly
evaluate its derivative at ! = 0:
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Where we have introduced:

�(x) :=
arctan(x)

x
� 1

1 + x2

We have considered limit !c ! 1 as this does not affect the qualitative trends
we are interested in. Since �(x)� 0 for any x 2 R, the whole expression (11)
is negative definite, as we want. Also notice that �(x = 0) = 0, so that the
whole expression goes to the already known value at zero temperature. The
quasiparticle weight is:

Z =
M
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At T = 0 the dimensionless quantity inside square brackets goes to 1 and we
recover the previous result (which is independent of �). If the temperature is
finite we recover a dependence on �, but it non-singular is in any case. Notice
that, if � is large, the quasiparticle wieght Z approaches 1. This signals a
reduction in the interaction, which is consistent with the fact that self-energy
decreases at large �, as it’s evident from equation (6).

Finally, although it is irrelevant, note that in the absence of the factor 3⇡2/16
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Abstract: Strange metal behavior refers to a linear temperature dependence of the electrical resistivity
that is not due to electron–phonon scattering. It is seen in numerous strongly correlated electron
systems, from the heavy fermion compounds, via transition metal oxides and iron pnictides, to
magic angle twisted bi-layer graphene, frequently in connection with unconventional or “high
temperature” superconductivity. To achieve a unified understanding of these phenomena across
the different materials classes is a central open problem in condensed matter physics. Tests whether
the linear-in-temperature law might be dictated by Planckian dissipation—scattering with the rate
⇠ kBT/h̄—are receiving considerable attention. Here we assess the situation for strange metal heavy
fermion compounds. They allow to probe the regime of extreme correlation strength, with effective
mass or Fermi velocity renormalizations in excess of three orders of magnitude. Adopting the same
procedure as done in previous studies, i.e., assuming a simple Drude conductivity with the above
scattering rate, we find that for these strongly renormalized quasiparticles, scattering is much weaker
than Planckian, implying that the linear temperature dependence should be due to other effects. We
discuss implications of this finding and point to directions for further work.

Keywords: heavy fermion compounds; strange metals; Planckian dissipation; quantum criticality;
Kondo destruction

1. Introduction
A first step in understanding matter is to delineate the different phases in which

it manifests. To do so, a characteristic that uniquely identifies a phase must be found,
and using its order has worked a long way. How this classification should be extended
to also incorporate topological phases [1] is a matter of current research. Here, we focus
on topologically trivial matter and thus take order-parameter descriptions [2] as a starting
point and consider the case of second-order phase transitions. As an order parameter
develops below a transition (or critical) temperature, the system’s symmetry is lowered (or
broken). Cornerstones are the power law behavior of physical properties near the critical
temperature, with universal critical exponents, and the associated scaling relationships.
Combined with renormalization-group ideas [3], this framework is now referred to as the
Landau–Ginzburg–Wilson (LGW) paradigm. It has also been extended to zero temperature.
Here, phase transitions—now called quantum phase transitions [4]—can occur as the balance
between competing interactions is tipped. To account for the inherently dynamical nature of
the T = 0 case, a dynamical critical exponent needs to be added. This increases the effective
dimensionality of the system, which may then surpass the upper critical dimension for
the transition, so that the system behaves as noninteracting, or “Gaussian”. Interestingly,
however, cases have been identified where this expectation is violated [5–8], evidenced for
instance by the observation of dynamical scaling relationships [9] that should be absent
according to the above rationale. We will refer to this phenomenon as “beyond order
parameter” quantum criticality. It appears to be governed by new degrees of freedom
specific to the quantum critical point (QCP). This is a topic of broad interest both in
condensed matter physics and beyond, but a general framework is lacking. We will here
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Combined with renormalization-group ideas [3], this framework is now referred to as the
Landau–Ginzburg–Wilson (LGW) paradigm. It has also been extended to zero temperature.
Here, phase transitions—now called quantum phase transitions [4]—can occur as the balance
between competing interactions is tipped. To account for the inherently dynamical nature of
the T = 0 case, a dynamical critical exponent needs to be added. This increases the effective
dimensionality of the system, which may then surpass the upper critical dimension for
the transition, so that the system behaves as noninteracting, or “Gaussian”. Interestingly,
however, cases have been identified where this expectation is violated [5–8], evidenced for
instance by the observation of dynamical scaling relationships [9] that should be absent
according to the above rationale. We will refer to this phenomenon as “beyond order
parameter” quantum criticality. It appears to be governed by new degrees of freedom
specific to the quantum critical point (QCP). This is a topic of broad interest both in
condensed matter physics and beyond, but a general framework is lacking. We will here
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dynamically, therefore, Sr3Ru2O7 can be thought
of as two metallic fluids, one which participates
directly in the quantum criticality and another, con-
taining a higher density of quasiparticles, which
does not.

Given the extensive knowledge of the thermo-
dynamic and quasiparticle properties of Sr3Ru2O7,
it is natural to investigate its electrical transport
properties both below and above T* (11). In Fig. 1,
we show the temperature evolution of the data
at representative magnetic fields from across the
range studied, for T > Tc. In zero field, r varies
approximately quadratically with temperature for
1.2 K < T < 10 K, which is in qualitative agree-

ment with previous reports (2, 12). As the field is
increased toward Hc, the temperature range over
which the approximately quadratic temperature
dependence occurs shrinks, until at the critical
field of 7.9 T, the resistivity varies linearly with
temperature over the whole range shown, with
a gradient of 1.1 microhm·cm/K. For H > Hc

(Fig. 1B) there is a small negative magnetoresist-
ance, but the gradient of the resistivity once it has
become linear is almost independent of field.

That T-linear resistivity is seen in Sr3Ru2O7 is
surprising. As discussed above, the majority of
the quasiparticles do not participate in the mass
divergence at Hc. If they were simply an inde-
pendent Fermi liquid contributing to the conduc-
tivity in parallel with the quantum critical fluid,
they would be expected to short out the contribu-
tion of the small number of carriers that are be-
coming heavy on the approach to Hc, giving a
dominantT2 contribution to the resistivity. The data
of Fig. 1 strongly suggest that as well as inducing
a mass divergence in a subset of the carriers, the
quantum criticality in Sr3Ru2O7 is associated with
the onset of efficient scattering, with strength pro-
portional to T, which affects all the quasiparticles.

Qualitative support for this basic picture comes
from the data presented in Fig. 1C, in which we
show the resistivity of Sr3Ru2O7 for the same
set of fields as in Fig. 1A, but for temperatures
extending to 400 K. Above 100 K, r is again
T-linear, in this case at all applied fields, but with
a gradient ~30% lower than that seen at Hc for

T < 20 K. There is an interesting correlation be-
tween this observation and previous studies of the
specific heat. Measurements to elevated temper-
atures show that forT>T*, g is field-independent
and ~65%of the low temperature valuemeasured
in zero applied field (8). This implies a similar fall
in the average effective mass, or equivalently, a
35% rise in the average Fermi velocity. The data
in Fig. 1C therefore suggest that there is a similar
scattering rate per kelvin below T* atHc and well
above T* at all applied fields.

Although attention is typically focused on the
power law dependence of the resistivity, the ab-
solute magnitude of the scattering rate is also an
important quantity. A phenomenological argument
for a T-linear scattering rate has been discussed
by a number of authors in the context of the
cuprates and quantum critical metals and fluids
(13–15). Because quantum criticality is associ-
ated with the depression of energy scales toward
T = 0, temperature becomes the only relevant en-
ergy scale. Equipartition of energy then applies,
and the characteristic energy of any quantum crit-
ical degree of freedom is just kBT, where kB is
Boltzmann’s constant. This in turn implies the ex-
istence of a characteristic time, sometimes referred
to as the Planck time tP ~ ħ/kBT, where ħ is Planck’s
constant divided by 2p. Although the simplic-
ity of this expression is appealing, it is far from
obvious that (TtP)

−1 ~ kB/ħ defines a scattering
rate relevant to a measurement of electrical re-
sistivity. Resistive scattering processesmust relax

Fig. 1. (A) Resistivity (r) of high-purity single
crystal Sr3Ru2O7 at 0 T (red), 4 T (blue), 6 T (green),
7 T (orange), and its critical field moHc= 7.9 T (black).
The gray dashed lines are fits of the type r0 + AT2

to the low-temperature data, which illustrate the
suppression of the temperature at which the re-
sistivity crosses over to being quadratic in temper-
ature as H is tuned toward Hc. (B) r at Hc (black),
12 T (blue), and 14 T (red). (C) r at 0 T, 4 T, 6 T, 7 T,
and Hc over an extended temperature range up to
400 K. Above 20 K, there is a negative magneto-
resistance, but it is so small that data at all fields
overlap when plotted on this scale. The dotted line
shows the extrapolation of the low-temperature
linear resistivity at 7.9 T.

Fig. 2. In spite of two orders of magnitude variations in their Fermi velocities (vF), a wide range of metals
in which the resistivity varies linearly with temperature have similar scattering rates per kelvin. These
include heavy fermion, oxide, pnictide, and organic metals for which T-linear resistivity can be seen down
to low temperatures with appropriate tuning by magnetic field, chemical composition, or hydrostatic
pressure, and more conventional metals for which T-linear resistivity is seen at high temperatures (blue
symbols). At low temperatures, the scattering rate per kelvin of a conventional metal is orders of mag-
nitude lower, as illustrated for the case of Cu at 10 K, shown in the lower right hand corner (11). On the
graph, the line marked a = 1 corresponds to (tT )−1 = kB/ℏ. The near-universality of the scattering rates is
observed in spite of the fact that the scattering mechanisms vary across the range of materials. The point
for Bi2Sr2Ca0.92Y0.08Cu2O8+d is based on the value a = 1.3, which is determined from optical conductivity
(21), combined with the measured value of vF for this material (44). For all others, the analysis is based on
resistivity data combined with knowledge of the Fermi volume and average Fermi velocity. Full details of
the determination of the parameters in the axis labels are given in (11).
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the membrane with a white noise–driven piezo-
electric actuator (purple trace exceeds dashed curve
in Fig. 3B), which also drivesmechanical modes of
the mirrors and supports, leading to extra modula-
tion.However, the cross-correlation spectrum (blue
trace) remains unchanged, equal to the unperturbed
spectrum (dashed curve), implying that very little
of the ambient motion is transduced.

The cross-correlation can also be viewed as
evidence that we have made a quantum non-
demolition (QND) measurement of the intracav-
ity photon fluctuations of the signal beam (14, 28).
Here, the membrane acts as the measurement de-
vice, with its state of motion recording the photon
fluctuations over the band of the mechanical res-
onance. The correlation C is equivalent to a state
preparation fidelity for a nonideal QND measure-
ment (29). Further, it has been shown that
frequency-dependent ponderomotive squeezing
of the signal beam quantum noise is possible (30)
and has recently been demonstrated in an atomic
gas cavity optomechanical system (31). For our
current laser configuration (∆S = 0), we do not
expect to see squeezing in the detected ampli-
tude quadrature. However, our device parameters
are sufficient to realize much stronger squeezing
than has previously been demonstrated, limited
mainly by optical loss. Our observations open
the door to realizing position measurement near

the SQL if residual thermal noise and excess
cavity-laser phase noise can be eliminated with
improved devices or a colder base temperature.
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Similarity of Scattering Rates in
Metals Showing T-Linear Resistivity
J. A. N. Bruin,1 H. Sakai,1 R. S. Perry,2 A. P. Mackenzie1

Many exotic compounds, such as cuprate superconductors and heavy fermion materials, exhibit
a linear in temperature (T ) resistivity, the origin of which is not well understood. We found that
the resistivity of the quantum critical metal Sr3Ru2O7 is also T-linear at the critical magnetic
field of 7.9 T. Using the precise existing data for the Fermi surface topography and quasiparticle
velocities of Sr3Ru2O7, we show that in the region of the T-linear resistivity, the scattering rate
per kelvin is well approximated by the ratio of the Boltzmann constant to the Planck constant
divided by 2p. Extending the analysis to a number of other materials reveals similar results in
the T-linear region, in spite of large differences in the microscopic origins of the scattering.

Whenthe high-temperature cuprate super-
conductors were discovered, it quickly
became clear that the highest super-

conducting transition temperatures were seen in
materials whose electrical resistivity varied lin-
early with temperature (T ) in certain regions of
the temperature-doping phase diagram. Since then,
T-linear resistivity has been seen in the pnictide
and organic superconductors, as well as in many
heavy fermion compounds, both superconduct-
ing and non-superconducting. Inmost of the heavy
fermion materials, the T-linear resistivity is seen
when they have been tuned by some external

parameter to create a low-temperature continuous
phase transition known as a quantum critical point
(QCP). T-linear resistivity is therefore often as-
sociated with quantum criticality. However, other
power laws—for example, T1.5—are also seen in
the resistivity in quantum critical systems (1), and
the origin of the T-linear term remains the subject
of active research and debate. Here, we present
an analysis of electrical transport data from 1.5
to 400 K in Sr3Ru2O7 and compare our findings
to those in a wide variety of other materials, in-
cluding elemental metals, that exhibit T-linear
resistivity.

Sr3Ru2O7 is a magnetic-field–tuned quantum
critical system (2) that can be prepared in single-
crystal formwith very low levels of disorder (3, 4).
For an applied field oriented parallel to the crys-
tallographic c axis, the approach to the quantum

critical point at the critical field moHc = 7.9 T is
cut off by the formation of a purity-sensitive ne-
matic phase for 7.8 T < moH < 8.1 Tand T < 1.2K.
Outside this phase, canonical signatures of quan-
tum criticality are seen in a range of physical
properties including the spin-lattice relaxation rate,
thermal expansion, specific heat, and magneto-
caloric effect (5–8). As the magnetic field is varied
at low temperature, both the specific heat and
entropy show a strong peak, centered onHc. Cool-
ing at zero field shows a broad peak in the elec-
tronic specific heat coefficient g = cel/T, centered
at approximately 10 K but extending to T* ~ 25K.
As the field is increased, this peak sharpens, and
its characteristic temperature is depressed, until at
Hc, g varies as –lnT for 1.2K < T < 20 K. At all
fields, an entropy of ~0.1Rln2 is recovered by T*,
where R is the molar gas constant (8). These ob-
servations indicate that the ~25K energy scale
is associated with a fraction of the states in the
Brillouin zone and that these states are responsi-
ble for the quantum criticality.AboveT*, they have
the entropic characteristics of “classical” fluctua-
tors at all applied fields, with the crossover tem-
perature suppressed on the approach to Hc.

The fact that only some of the states in the
Brillouin zone participate thermodynamically in
the quantum criticality is consistent with findings
from the de Haas-van Alphen (dHvA) effect and
angle-resolved photoemission (9, 10). Six distinct
dHvA frequencies are identified, each correspond-
ing to quasi–two dimensional (2D) Fermi surface
pockets, and the quasiparticle masses are essen-
tially field-independent for five of them (9). Thermo-
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Astronomy, University of St Andrews, North Haugh, St Andrews
KY16 9SS, UK. 2Scottish Universities Physics Alliance, School of
Physics and Astronomy, University of Edinburgh, Mayfield Road,
Edinburgh EH9 3JZ, UK.
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1/t=aKBT with a~1

by δU ¼ ∂
∂β ðβ δF Þ; (with β ¼ 1

kBT
) finding

δU ¼ kBT ∑
n;q

ωq þ 1
2 γjωnj

ω2
n

Ω
þ γjωnjþ ωq

%
ωq

ω2
n

Ω
þ ωq

2

4

3

5: ð6Þ

This expression allows us to define the internal energy of the damped CDFs as

U ¼ kBT∑
n
∑
q

ωq þ 1
2 γjωnj

ω2
n

Ω
þ γjωnjþ ωq

:

The Matsubara sum of the term with 1
2 γjωnj in the numerator is formally

divergent and therefore a convergency factor should be included as it is customary
in diagrams with closed loops. By introducing the spectral representation of the
boson propagator, and carrying out the Matsubara sum, the thermal part of the
internal energy is obtained as

U ¼ ∑
q

1
π

Z 1

0
dω

γω ω2

Ω
þ ωq

! "

ω2

Ω
% ωq

! "2
þ γ2ω2

bðωÞ:

The specific heat is obtained by differentiating the internal energy with respect
to T and dividing by the size of the system (e.g., the number N of unit cells),
yielding

CB
V ¼

∂
∂T

Z 1

0
dω ρBðωÞ ω bðωÞ; ð7Þ

where an effective density of states

ρBðωÞ ¼
1
N
∑
q

1
π

γ ω2

Ω
þ ωq

! "

ω2

Ω
% ωq

! "2
þ γ2ω2

has been defined.
We consider a three-dimensional unit cell, but we assume that the dispersion in

q!-space is only on the x, y plane. Introducing a density of states for the variable
!νj q!% q!cj

2,

gðεÞ ¼
1
N
∑
q

δð!νj q!% q!cj
2 % εÞ &

1
π!ν

θðΛ% εÞ;

where, in order to find an analytical expression, we approximate the quarter of the
Brillouin zone with a circle centered at each of the four equivalent q!c, with radius
!q, and Λ & !ν!q2. We then obtain the analytical expression of the effective spectral
density of the CDF

ρBðωÞ ¼
γ

2π2!ν
log

m þ Λ % ω2

Ω

! "2
þ γ2ω2

m % ω2

Ω

! "2
þ γ2ω2

þ
2ω

π2!ν Ω
arctan

mþ Λ
γω

%
ω

γΩ

# $
% arctan

m
γω

%
ω

γΩ

# $% &
:

ð8Þ

Since we are considering the limit of low temperatures it is reasonable to assume
both ω '

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωðmþ ΛÞ

p
and γω≪m+Λ. In this regime, we can approximate

ρB(ω) as ρBðωÞ & γ
π2!ν log 1þ Λ

m

( )
: If one uses r.l.u., then the replacement !ν !

!ν=ð4π2Þ must be performed, and one finds the expression for the low-frequency
asymptotic behavior of ρB(ω) given in the main text.

The approximation becomes more and more accurate at lower and lower
temperature. From this equation it is evident that ρB(ω) is a linear function of γ,
and so is the specific heat. Since ρB(ω) is a constant function of ω in the regime of
our interest, we get the explicit expression

CB
V &

γ
π2!ν

log 1þ
Λ
m

# $
∂
∂T

k2BT
2
Z 1

0

x
ex % 1

dx
# $

:

Our final expression for the ratio CB
V=T is then

CB
V

T
& k2B

γ
3!ν

log 1þ
π!ν
m

# $
:

Again, if one uses r.l.u., the substitution !ν ! !ν=ð4π2Þ must be performed.
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multiplicity of the Fermi surface. By contrast, the Hall coefficient 
RH is not. In Fig. 2d, we compare RH(T) in Bi2212 and in Nd-LSCO 
(and PCCO). We see strong differences, brought about by the dif-
ferent anisotropies in either the inelastic scattering or the Fermi sur-
face, or both23. Nevertheless, ρ(T) is perfectly linear in both cases. 
Moreover, the coefficient A1

□ is the same despite the very different 
spectra of low-energy spin fluctuations, gapped in Bi2212 (ref. 24) 
and ungapped in Nd-LSCO (ref. 25). We conclude that a T-linear 
resistivity as T →  0 is a generic and robust property of cuprates.

Note that ρ(T) deviates from pure T-linearity above a certain 
temperature, and in this high-T regime a generic evolution has 
also been found in LSCO (ref. 26), with ρ(T) ~ A1T +  A2T2. Here we 
focus strictly on the low-T regime of pure T-linear resistivity (see 
Supplementary Section 12). In this regime, and close to the QCP 
of BaFe2(As1−xPx)2 (at x =  0.31), an empirical scaling relationship 
between applied magnetic field and temperature has been pro-
posed27, but this scaling does not work very well in Bi2212 (see 
Supplementary Section 11).

We now investigate the strength of the T-linear resistivity; that is, 
the magnitude of A1. In Fig. 3b, we plot A1

□ versus p for hole-doped 
cuprates. We see from the LSCO data8 that A1

□ increases with decreas-
ing p (Fig. 1b), from A1

□ ~ 8 Ω  K−1 at p =  0.26 to A1
□ ~ 15 Ω  K−1 at 

p =  0.21 (see Supplementary Table 2 in Supplementary Section 13 and 
Methods). In Nd-LSCO, we see a similar increase (Figs. 1c and 3b),  
when pressure12 is used to suppress the onset of the pseudogap at 
p =  0.22 and p =  0.23 (see Supplementary Section 4). In Fig. 1d, 
we present our data on PCCO at x =  0.17 (see also Supplementary 

Section 5), and compare with previous data on LCCO (ref. 14; 
Supplementary Section 6). In Fig. 4b, we plot A1

□ versus x for elec-
tron-doped cuprates, and see that A1

□ also increases with decreas-
ing x, from A1

□ ~ 1.5 Ω  K−1 at x =  0.17 to A1
□ ~ 3 Ω  K−1 at x =  0.15 (see 

Supplementary Table 4 in Supplementary Section 13 and Methods). 
Note that these values are five times smaller than in hole-doped 
cuprates.

To summarize: A1
□ increases as the doping is reduced in both 

hole-doped and electron-doped cuprates; A1
□ is much larger in 

hole-doped cuprates; T-linear resistivity as T →  0 is observed 
over a range of doping, not just at one doping; T-linear resistiv-
ity does not depend on the nature of the inelastic scattering pro-
cess (hole-doped versus electron-doped) or on the topology of 
the Fermi surface (LSCO versus NCCO, Bi2212 versus Nd-LSCO; 
Supplementary Section 1).

To explain these experimental facts, we consider the empirical 
observation that the strength of the T-linear resistivity for several 
metals is approximately given by a scattering rate that has a uni-
versal value, namely ħ/τ =  kBT (ref. 10), and test it in cuprates. This 
observation suggests that a T-linear regime will be observed when-
ever 1/τ reaches its Planckian limit, kBT/ħ, irrespective of the under-
lying mechanism for inelastic scattering9. In the following, we use 
a standard Fermi-liquid approach to extract effective masses and 
inelastic scattering rates, as in ref. 10. In the simple case of an iso-
tropic Fermi surface, the connection between ρ and τ is given by 
the Drude formula, ρ =  (m*/ne2) (1/τ), where n is the carrier den-
sity and m* is the effective mass. Thus, when ρ(T) =  ρ0 +  A1T, then 
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Fig. 1 | T-linear resistivity in five overdoped cuprates. In-plane electrical resistivity ρ of cuprates showing a T-linear resistivity at low temperature.  
a, Nd-LSCO at p!= !0.24 (blue, H!= !16!T; from ref.!11) and Bi2212 at p!= !0.23 (red squares, H!= !55!T; this work, Fig. 2a). b, Temperature-dependent part of the 
resistivity, ρ(T)!− !ρ0, for LSCO at p!= !0.21 (green, H!= !48!T; from ref.!8), p!= !0.23 (orange, H!= !48!T; from ref.!8), p!= !0.26 (blue, H!= !18!T; from ref.!42)  
(see Supplementary Section 7). c, ρ(T)!−!ρ0 for Nd-LSCO at H!= !33!T, at p!= !0.22 (green) and 0.23 (orange) (from ref.!12) and at p!= !0.24 (blue; from ref.!7). 
For p!= !0.22 and 0.23, a pressure of 2!GPa was applied to suppress the pseudogap phase (see Supplementary Section 4). d, ρ(T)!− !ρ0 for LCCO at x!= !0.15 
(green, H!= !8!T), x!= !0.16 (orange, H!= !6.5!T) and x!= !0.17 (blue, H!= !4!T) (from ref.!14), and PCCO at x!= !0.17 (red, H!= !16!T; this work, see Supplementary 
Section 5). All dashed lines are a linear fit.
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SOME EXPERIMENTAL CONSEQUENCES

The interaction is (almost) momentum independent ⇒ vertex corrections negligible in current-current response
⇒S(w,T) (almost) fully determines the optical conductivity s(w,T)

• At w>T, s(w,T) quite similar to the MFL case 
(see Michon et al, Nat Commun. 2023)

• But notice that s(w,T) scaling in not perfect at low w when T<100 K
M/g is small but finite and spoils perfect scaling

This linear dependence of the scattering rate calls for a com-
parison with resistivity. Hence we have also measured the tem-
perature dependence of the resistivity of our sample under two
magnetic fields H = 0 T and H = 16 T. As displayed in Fig. 2a, the
resistivity has a linear T-dependence ρ = ρ0 + AT over an extended
range of temperature, with A ≈ 0.63 μΩcm/K. This is a hallmark of
cuprates in this regime of doping10,13,14,20,53. It is qualitatively con-
sistent with the observed linear frequency dependence of the scat-
tering rate and, as discussed later in this paper, also in good
quantitative agreement with the ω→ 0 extrapolation of our optical
data within experimental uncertainties.

The optical mass enhancement m*(ω)/m is displayed in Fig. 1d.
With the chosen normalization, m*/m does not reach the asymptotic
value of one in the range ℏω <0.4 eV, which means that intra- and
interband and/or mid-infrared transitions overlap above 0.4 eV. The
inset of Fig. 1d shows a semi-log plot of the mass enhancement eval-
uated atℏω = 5kBT, where thenoise level is low forT⩾ 40K.Despite the
larger uncertainties at low T, this plot clearly reveals a logarithmic
temperature dependence ofm*/m. This is a robust feature of the data,
independent of the choice of ϵ∞ and K. We note that the specific heat
coefficient C/T of LSCO at the same doping level was previously
reported to display a logarithmic dependence on temperature, see
Fig. 2c47,48. We will further elaborate on this important finding of a
logarithmic dependence of the optical mass and discuss its relation to
specific heat in the next section.

Scaling analysis
In this section, we consider simultaneously the frequency and tem-
peraturedependenceof theoptical properties and investigatewhether
ℏω/kBT scaling holds for this sample close to the pseudogap critical

point. We propose a procedure to determine the three parameters ϵ∞,
K, and m introduced above.

Puttingω/T scaling to the test. Quantum systems close to a quantum
critical point display scale invariance. Temperature being the only
relevant energy scale in the quantumcritical regime, this leads inmany
cases toω/T scaling22 (inmost of the discussion below, we set ℏ = kB = 1
except when mentioned explicitly). In such a system we expect the
complex optical conductivity to obey a scaling behavior 1/
σ(ω, T)∝ TνF(ω/T), with ν⩽ 1 a critical exponent. More precisely, the
scaling properties of the optical scattering rate and effective mass
read:

1=τðω,TÞ=Tνf τ ðω=TÞ ð4Þ

m*ðω,TÞ #m*ð0,TÞ=Tν#1f mðω=TÞ ð5Þ

with fτ and fm two scaling functions. This behavior requires that both ℏω
and kBT are smaller than a high-energy electronic cutoff, but their ratio
can be arbitrary. Furthermore, we note that when ν = 1 (Planckian case)
the scaling is violated by logarithmic terms, which control in particular
the zero-frequency value of the optical mass m*(0,T). As shown in
Theorywithin a simple theoreticalmodel,ω/T scalingnonetheless holds
in this case to an excellent approximation provided that m*(0, T) is
subtracted, as in Eq. (5). We also note that in a Fermi liquid, the single-
particle scattering rate∝ω2 + (πT)2 does obeyω/T scaling (with formally
ν = 2), but the optical conductivity does not. Indeed, it involves ω/T2

terms violating scaling, and hence depends on two scaling variables
ω/T2 and ω/T, as is already clear from an (approximate) generalized
Drudeexpression 1/σ ≈ − iω + τ0[ω2 + (2πT)2]. For a detaileddiscussionof
this point, see Ref. 54. Such violations of scaling by ω/Tν terms apply
more generally to the case where the scattering rate varies as Tν with
ν > 1. Hence, ω/T scaling for both the optical scattering rate and optical
effective mass are a hallmark of non-Fermi liquid behavior with ν⩽ 1.
Previous work has indeed provided evidence for ω/T scaling in the
optical properties of cuprates23,24.

Here, we investigate whether our optical data obey ω/T scaling.
We find that the quality of the scaling depends sensitively on the
chosen value of ϵ∞. Different prescriptions in the literature to fix ϵ∞
yield—independently of themethod used—values ranging from ϵ∞ ≈ 4.3
for strongly underdoped Bi2212 to ϵ∞ ≈ 5.6 for strongly overdoped
Bi221232,55. The parameter ϵ∞ is commonly understood to represent the
dielectric constant of thematerial in the absenceof the charge carriers,
and is caused by the bound charge responsible for interband transi-
tions at energies typically above 1 eV. While this definition is unam-
biguous for the insulating parent compound, for the doped material
one is confronted with the difficulty that the optical conductivity at
these higher energies also contains contributions described by the
self-energy of the conduction electrons, caused for example by their
coupling to dd-excitations56. Consequently, not all of the oscillator
strength in the interband region represents bound charge. Our model
overcomes this hurdle by determining the low-energy spectrumbelow
0.4 eV, and subsuming all bound charge contributions in a single
constant ϵ∞. Its value is expected to be bound from above by the value
of the insulating phase, in other words we expect to find ϵ∞ < 4.5 (see
Supplementary Information Sec. A). Rather than setting an a priori
value for ϵ∞, we follow here a different route and we choose the value
that yields the best scaling collapse for a given value of the exponent ν.
This program is straightforwardly implemented for 1/τ and indicates
that the best scaling collapse is achieved with ν ≈ 1 and ϵ∞ ≈ 3, see
Fig. 2b as well as Supplementary Information Sec. B and Supplemen-
tary Fig. 2. Turning to m*, we found that subtracting the dc value
m*(ω =0, T) is crucial when attempting to collapse the data. Extra-
polating optical data to zero frequency is hampered by noise. Hence,

Fig. 2 | Scaling of scattering rate and mass enhancement. a Temperature-
dependent resistivity measured in zero field (black) and at 16 teslas (red). The inset
emphasizes the linearity of the 16 T data at low temperature. The dashed line shows
ρ0 +AT with ρ0 = 12.2 μΩcm and A =0.63 μΩcm/K. b Scattering rate divided by
temperature plotted versus ω/T; the collapse of the curves indicates a behavior 1/
τ ~ Tfτ(ω/T). c Effective quasiparticle mass (in units of the indicated band mass m)
deduced from the low-temperature electronic specific heat47

[m*
Cp = ð3=πÞð_

2dc=k
2
BÞðC=TÞ] and zero-frequency optical mass enhancement; the

dashed lines indicate lnT behavior. dOptical mass minus the zero-frequencymass
shown in c plotted versus ω/T; the collapse of the curves indicates a behavior
m*(ω) −m*(0) ~ fm(ω/T). The data between0.22 and0.4 eV are shown asdotted lines.
ϵ∞ = 2.76 was used here as in Fig. 1.
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tains a !-like Drude term, while the critical CM’s may give
absorption at finite frequencies.

The RPA effective interaction of Fig. 1!b", "= !V−1

−#"−1 #here #!q"$−T%kG0!k+q"G0!k" is the QP polariza-
tion bubble&, near the QCP has the generic form

"!q" = − #$
−1!m + %q + '$n' + $n

2/&̄"−1, !1"

for small frequencies and q( ±qc. Here, #$$'##!qc ,$n"
−#!qc ,0"& / '$n''$n=0, and %q(''q(qc'2. m, ', and &̄ are
model-dependent coefficients which result from the second-
order expansion of V−1−# around qc and $n=0. Except for
the $n

2 term, "!q" has the general hydrodynamic form of a
propagator for diffusive CM’s !damped by QP’s" near a
Gaussian QCP. Here m, proportional to the square of the
inverse correlation length, is the CM mass measuring the
distance from criticality. If the frequency dependence of "
only arises from the QP bubble #—i.e., if the bare interac-
tion V is purely static—the optical response is zero #the dia-
grams of Fig. 1!c" cancel each other&, as we show below. On
the other hand, if the bare interaction V has its own dynam-
ics, a finite )!&" is obtained. We analyze these two situa-
tions, and for concreteness we fix the values of the param-
eters, adopting as an example the model of Ref. 15. There, a
bare interaction V!q"=V0!q"−*$̄2!$̄2+$n

2"−1 was consid-
ered, arising from both a static short- and long-range Cou-
lomb repulsion V0 and from the coupling to a dispersionless
phonon of frequency $̄. For moderate electron-phonon cou-
pling *+%F, where %F is the typical QP Fermi energy !in
cuprates, e.g., %F(0.3 eV", this interaction can lead to a
charge-ordering instability, at a wave vector qc. Within this
model we find m$#$

−1)#*−V0!qc"&−1+#!qc ,0"* and &̄
$*−1$̄2#*−V0!qc"&2#$. In Refs. 2 and 15 the instability,
signaled by a vanishing m, occurred for *+V0
+'#!qc ,0"'−1+%F. Then, we estimate '+%F /kF

2 !kF is the

Fermi momentum" and &̄+ $̄!$̄ /%F".
Current-current response function. Near criticality, the

diagrams of Fig. 1!c", with incoming zero momentum and
finite frequency &l, are dominated by the poles of the CM
propagators. Then, we write the vertex–self-energy !VS" and
Aslamazov-Larkin !AL" contributions to the current-current
response function , j j

-- as T%q,$n
VVS

--!$n ,&l""!q ,$n" and
1
2T%q,$n

#VAL
- !$n ,&l"&2"!q ,$n""!q ,&l+$n", where -=x ,y,

and we have exploited the relation "!q ,$n"="!−q ,$n". The
vertices VVS

-- and VAL
- come from the integration on the QP

loops. To perform an analytic calculation, we adopt the stan-
dard procedure of linearizing the QP dispersion around the
points of the Fermi surface connected by qc #hot spots
!HS’s"&.1 Then, we find !see also Ref. 16"

VVS
--!$n,&l" = −

e2

2
#$!u-"2&l

−2

.!'&l + $n' − 2'$n' + '&l − $n'" , !2"

VAL
- !$n,&l" = − ie#$u-&l

−1!'&l + $n' − '$n'" , !3"

where e is the electron charge, u-$vHS1
- −vHS2

- , and vHS
- is

the - component of the Fermi velocity at the HS’s !see Fig.
2". The vertices vanish identically in the direction perpen-
dicular to qc—i.e., for -=y—since in Fig. 2 we took qc
along the x axis and vHS1

y =vHS2
y —i.e., uy $0. Thus , j j

yy!&l"
$0 for &l!0, regardless of the retarded or static character
of the bare interaction V.

To calculate , j j
xx, we exploit the identity

"!q,$n""!q,&l + $n" =
#$

−1#"!q,&l + $n" − "!q,$n"&

'&l + $n' − '$n' +
&l

&̄
!&l + 2$n"

,

!4"

which is immediately derived from Eq. !1" and allows us to
write the AL contribution to , j j

xx as

FIG. 1. !a" Typical diagram of our BK generating functional.
The solid and dashed lines represent the QP propagator and the bare
interaction V!q", respectively. !b" Bubble resummation to obtain the
RPA-dressed CM propagator !wavy line". !c" Diagrams for the
current-current response, obtained from current-vertex insertions
!solid dots" in the diagrams of the BK functional. AL, V, and S
stand for Aslamazov-Larkin-like, vertex, and self-energy diagrams,
respectively.

FIG. 2. Sketch of a two-dimensional Fermi surface with four
HS’s connected by a generic incommensurate critical wave vector
qc= !qc ,0". Fermi velocities at the HS’s and their components are
also shown.
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i.e., the product of the T-dependent Bose distribution bðωÞ=
ð1# e#ω=kBT Þ

#1
with the imaginary part of the dynamical density fluc-

tuation propagator Dðq,ωÞ, where the _ constant is implicit so that
the ω terms stand for energy, and ω>0 for energy loss (Stokes) scat-
tering. The propagator is that of overdamped quantum critical
fluctuations13,20,21,40

Dðq,ωÞ=
1

ω0 Tð Þ+ ν0 q# qCDF

!! !!2 # iγω# ω2=!ω
" # , ð2Þ

with the CDF frequency ω following a parabolic dispersion from ω0 at
q =qCDF, with coefficient ν0; !ω is the cut-off frequency abovewhich the
CDF spectral density decreases more rapidly. The Landau damping
parameter γ is proportional to the electron density of states that sets a
measure of the phase space available for the decay of the fluctuations.
It can be shown that in q =qCDF the maximum of Im DðqCDF,ωÞ

$ %
is in

ω= ω0
γ , which is thus the energy Δ directly measured with very high

resolution RIXS at the criticalwave vector. Theminimum frequencyω0
is also linked to theCDF correlation length ξ by the relationω0 = ν0ξ

#2,
so that it can be independently determined from the width in q of the
CDF intensity peak, which is inversely proportional to ξ .

At a generic wave vector different from qCDF, the maximum of
Im½DðqCDF,ωÞ% is instead reached at ω= γ#1½ω0 Tð Þ+ ν0 q# qCDF

!! !!2%, an
energywhich is higher than∆. In particular, whenwe are far away from

qCDF the T-independent, quadratic term becomes relevant, and this
energy is maximum. We have named it Ω.

We have performed a global fit, which simultaneously considers
all the YBCOdata in both (H,0) and (H,H) directions at the 13measured
temperatures, using Eqs. (1) and (2), with four critical wave-vectors in
the first Brillouin zone qCDF = ±qCDF, 0

" #
, 0, ± qCDF
" #

. The experi-
mental data and the fitting results are compared in Fig. 2b–e. The
fitting leads to numerically robust estimates of ω0(T), ν0, γ and !ω (see
Methods). In particular, we find ω0 to increase from 5meV at Tc to
20meV at room temperature (see Fig. 2i), and ν0 = 1.26 eV (r.l.u.)−2 to
be close to the value previously found for optimal doping13,26. The
success of the global fittingwith the chosenmodel entails that the CDF
intensity has a major contribution in the quasi-elastic resonant scat-
tering at all q values far from the Γ point and causes the almost iso-
tropic increase of its intensity with the temperature, due to the finite
energy of the CDF. Thismeans that thewhole of the reciprocal space is
under the influence of CDF (see Supplementary Fig. 1e).

Given the importance of getting a reliable estimate of ω0(T), we
have analyzed the data also in a different way. We have isolated the
CDF peak close to qCDF by subtracting, at each T, the featureless (H,H)
data from the (H,0) ones. This subtraction allows us to remove from
the quasi-elastic RIXS intensity the contribution of the elastic scatter-
ingdue to surfacedefects,which is independent of themodulusofq; at
the same time, along the (H,H) direction the CDF contribution is still
present though rather flat, so that the shape, i.e. the FWHM, of the CDF
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Fig. 1 | Charge density fluctuations in overdoped cuprates. High resolution
(ΔE = 38meV) RIXS spectra have been measured on YBCO and Bi2212 (p ≈0.19) at
several momenta along both the (H,0) and (H,H) directions, at T = 80K and
T = 200K. a, b Intensitymaps of the difference (H,0) – (H,H) taken at 80K on YBCO
and Bi2212. c Fit of a RIXS spectrum on Bi2212 at a representative momentum. The
green, red, orange, blue Gaussians and the region below the gray dashed line
represent respectively the pure elastic (mainly given by the specular peak centered
at Γ = (0,0)), the CDF, the bond-stretching phonon modes, the bond-stretching
overtone and the paramagnons. Additional details on the fit are provided in the

Methods section. Given the position, intensity and width of the Gaussians, we have
obtained, as a function of q along the (H,0) direction and at both temperatures,
d the area of the elastic line, e the area of the CDF peak, and f the bond-stretching
phonon dispersion. The error bars are estimated using the 95% confidence interval
of the fit. In panel f the orange lines are guides to the eye while the gray line
represents the phonon dispersion in absence of any softening, as measured in
ref. 69. g–i Same as d–f, but on YBCO. In panel i, the gray line represents the
phonon dispersion in absence of any softening, as measured in ref. 70.
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The Fermi liquid:

The Fermi Liquid in a nutshell (4/4)

k

k’ f(k,k’)
The residual interaction between QP is contained in the interaction function f(k,k’)

From f(k,k’) the Landau parameters F(s,a)l are derived that describe physical quanQQes
(Fs0→ compressibility, Fa0 → magn. suscept.,…)

This also entails the Pomeranchuk stability condiQons of the FL. 
E.g. for the symmetric channel case
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Near the instabilities many different collective excitations 
can populate the  w-q plane:
paramagnons, Charge Density Waves, Pomeranchuk flucts,
Circulating Currents
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Supplementary Fig.1: Medium resolution RIXS measurements on YBCO (p=0.185). a,b Integrated 
quasi elastic intensity of the spectra measured respectively along the (a) (H,0) and (b) (H,H) directions is 
shown as a function of the momentum q at several temperatures T. The contour plot of these scans is in 
Fig. 2b,c. c,d, Calculated scans, determined via a global fit of the curves presented in panels (a) and (b). 
The contour plot of these scans is in Fig. 2d,e. e, Schematics of the four equivalent peaks in the Brillouin 
zone used to perform the global fit. Here, the used parameters are to fit the (H,0) and (H,H) scans at 80 K. 
It appears evident that the peaks centered along the (H,0) and (0,K) directions are so broad as to influence 
the intensity along the diagonal. f, The quasi elastic intensity is plotted here as a function of the tempera-
ture for different momenta q along the (H,H) direction. At every q the intensity rises with a similar slope. 
The vertical shift at small q is a consequence of the specular peak centered at Γ.  
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Supplementary Fig. 2: Medium resolution RIXS measurements on Bi2212 (p=0.19). a,b Integrated 
quasi elastic intensity of the spectra measured respectively along the (a) (H,0) and (b) (H,H) directions is 
shown as a function of the momentum q at several temperatures T. c,d, Calculated scans, determined via a 
global fit of the curves presented in panels (a) and (b). The experimental data are fitted considering ω0 

varying with temperature in the range 7-25 meV, ω̅ = 64 meV, ν0 = 1.52 eV(r.l.u.)-2, γ ≈ 1 around Tc.  e, 
CDF peaks at several temperatures, determined as the difference between the (H,0) and the (H,H) scans. 
Each peak has been fitted using a single Lorentzian, to get more insight on the T-dependence of CDF. f,g, 
The height and FWHM of the single Lorentzian profiles used to fit the data in panel (e) are plotted vs 
temperature. The error bars represent the 95% confidence interval of the Lorentzian fit. The solid line is a 
linear fit of the data. h, The energy Δ, extracted from the HR spectra, and the frequency ω0, determined 
from the medium resolution spectra by the FWHM of the CDF profiles, are plotted as a function of the 
temperature respectively as triangles and circles. The frequency ω0, determined by the global fit (solid 
line), is in fairly good qualitative agreement with the experiment, showing an increase as T raises. 
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Supplementary Fig. 4: Robustness of the doping dependence of the CDF energy along (H,H) via 
the Bose fit. a, The quasi-elastic intensity measured at q=0.44 r.l.u. along the (H,H) direction is plotted as 
a function of the temperature for the strongly underdoped (p=0.06, grey dots) and for the slightly overdo-
ped (p=0.185, blue dots) YBCO samples. To generalize the fit procedure presented in Fig. 4a,b, and show 
that the results are independent of the additive and multiplicative constants present in the Bose function 
we used, here we have presented the data after subtracting for both samples the zero-temperature contri-
bution A+I0, deriving from CDF and from the specular peak. It appears evident that the temperature de-
pendence of the quasi-elastic intensity is doping dependent, being the signal rise much steeper at higher 
doping.  b, The two dataset of panel (a) are plotted in terms of the reduced temperature T/Ω. Using this 
variable, the Bose function takes its universal form, and all the different curves should collapse with an 
appropriated choice of Ω. In our case, the two curves collapse on each other if the ratio between the ener-
gy Ω at p=0.06 and that at p=0.185 is 1.5. This ratio corresponds to that we have found in the main text, 
using the Bose function including the A and the I0 constants, and it is very close to the ratio we have 
found for the energy Δ at H=HCDF from the high resolution spectra. 
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