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Basic facts about QMC methods 

• Exact numerical solution of many-body Schrödinger equation using 
stochastic algorithms 

• Microscopic Hamiltonian of N identical particles 

• No constraints on geometry, dimensionality and strength of interaction  
• Systematic errors under control (time-step discretization, finite-size effects, 

…) 
• Results subject to statistical uncertainty 
• T=0 (ground state), finite T (thermodynamics), continuous space and lattice 

models 

Diffusion Monte Carlo (Projection method): continuous space - ground state  
Path Integral Monte Carlo: continuous space - thermodynamics 

Auxiliary field Monte Carlo: lattice models - thermodynamics (attractive Hubbard, half-filled 
repulsive Hubbard,…)
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First applications of Projection Monte-Carlo

Total of 13700 citationsTotal of 509 citations

Bosons: liquid helium Fermions: electron gas

Problem rapidly solved Problem still open



Liquid 4He

Aziz pot.

Aziz II pot.

experiment

Equation of state

Phase diagram
Structural properties



Jellium model
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Phase diagram of electron gas

Ceperley and Alder,  
Phys. Rev. Lett. 1980

Ortiz, Harris and Ballone,  
Phys. Rev. Lett. 1999

Zong, Liu and Ceperley,  
Phys. Rev. E 2002

Holzmann and Moroni,  
Phys. Rev. Lett. 2020

Azadi and Drummond,  
Phys. Rev. B 2024

Wigner crystal:      
Fully polarized: 

rs > 100
75 ≤ rs ≤ 100

Partially polarized:  
Fully polarized: 

20 ≤ rs ≤ 40
40 ≤ rs ≤ 100

Partially polarized:  
Fully polarized: never

60 ≤ rs ≤ 100
Ground state always 

paramagnetic



Similar results for 2DEG, 3He and 2D dipolar Fermi gas 
No itinerant ferromagnetism 

Ultracold atoms?      Stoner model 
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Evidence of ferromagnetic 
instability in a mixture of  
6Li atoms at  
Valtolina et al. Nature Phys. 2017

kFa ≃ 1



BCS-BEC crossover of an attractive Fermi gas

Unitary limit  

EoS:       

 is the Bertsch parameter

1
kFa

= 0

E/N =
3
5

ξϵF

ξ

Carlson et al. (2003)  
 - FN-DMC 

Astrakharchik et al. (2004)  
 - FN-DMC 

Gandolfi et al. (2011)  
 - FN-DMC 

Carlson et al. (2011)  
 - AFQMC

ξ = 0.44(1)

ξ = 0.42(1)

ξ = 0.3923(4)

ξ = 0.372(5)

Astrakharchik et al. PRL (2004)

Experiments: 
Paris: Nascimbene et al. Nature (2010) 

 
MIT: Ku et al. Science (2012) 
ξ = 0.415(10)

ξ = 0.376(5)

see also next talk by Strinati



Experiments testing the EoS

Radial compression mode:  
(Altmeyer et al. 2007)

Grand-canonical EoS from density profiles
(Navon et al. 2010)

P µ(z),a( )  =  
mω

r

2

2π
n(z)

At unitarity (1/kFa=0) 
2% accuracy  
overall accuracy better than 5%

ξ = 0.41(1)

Astrakharchik et al. PRL (2004)



Take-home message on QMC methods  

• Bosons: QMC methods are exact (both at T=0 and finite 
T).    Only limited by size of system (N ranges from few 
hundreds to few thousands)  

• Fermions: QMC methods are not exact (at T=0 upper 
bound on GS energy). Accuracy can not be established a 
priori.



Projection Monte Carlo (Diffusion MC) 

Schroedinger equation in imaginary time  

if at the initial time  is not orthogonal to the ground state  

for larger times 

The ground state component decays with the slowest rate. If the reference energy is 
chosen such that  at large times the wavefunction is proportional to the exact 
ground state 

τ = it /ℏ

|ψ (0)⟩ |ψ0⟩

Eref = E0

−∂τ |ψ(τ)⟩ = (H − Eref ) |ψ(τ)⟩

|ψ (0)⟩ = ∑
n

an |ψn⟩

|ψ (τ)⟩ = ∑
n

e−τ(En−Eref ) |ψn⟩
τ→∞

a0e−τ(E0−Eref ) |ψ0⟩

|ψ(τ)⟩ = e−τ(H−Eref ) |ψ(0)⟩and

|ψ(τ → ∞)⟩ = a0 |ψ0⟩



Algorithm 
• Algorithm is iterative: state in coordinate representation   

(approximation for propagator   exact if 
, but large fluctuations in the potential energy )  

• Importance sampling via a guiding function   

Fluctuations in  much reduced compared to ! 

•  Walkers distributed according to  

evolve from  according to diffusion, drift and branching    
Normalization changes!

ψ (R, τ) = ⟨R |ψ (τ)⟩

⟨R |e−δτ(T+V−Eref ) |R′￼⟩ ≃ e−δτ(V(R)−Eref )/2⟨R |e−δτT |R′￼⟩e−δτ(V(R′￼)−Eref )/2

δτ → 0 V(R)

f (R, τ) = ψT(R)ψ (R, τ)

EL(R) V(R)

f (R, τ)

R′￼→ R e
−δτ( EL(R) + EL(R′￼)

2 − Eref)

ψ (R, τ + δτ) = ∫ dR′￼⟨R |e−δτ(H−Eref ) |R′￼⟩ψ (R′￼, τ)

f(R, τ + δτ) = ∫ dR′￼⟨R |e−δτ(H−Eref ) |R′￼⟩
ψT(R)
ψT(R)′￼

f(R′￼, τ)

G(R, R′￼, δτ) = ⟨R |e−δτℒ |R′￼⟩e−δτ( EL(R) + EL(R′￼)
2 −Eref )

 Langevin operator (diffusion+drift) and  local energyℒ = −
ℏ2

2m (∇2
R + 2∇R ⋅

∇RψT(R)
ψT(R) ) EL(R) =

HψT(R)
ψT(R)

NW(τ) = ∫ dR f (R, τ)



After long projection time 

Exact ground state energy

A. Diffusion: walkers explore configuration space 

B. Drift: walkers pushed where  is largest 

C. Branching: i-th iteration walker  is replicated  times

ψT

R ni

Systematic errors: 
a) time step  small enough 
b) number of walkers  large enough

δτ
NW



Walkers distributed according to pdf   f(R, τ)

f(R, τ) ≥ 0

f(R, τ → ∞) = ψT(R)Ψ0(R) ≥ 0

σ2

|EF
0 |

∼
1
NW

eNτ EF
0 − EB

0
N

density of walkers at time τ

GS of bosons      
GS of fermions  

ΨB
0(R) ≥ 0

ΨF
0(R) ≷ 0

For fermions  must be antisymmetric such thatψT(R)

f(R, τ → ∞) = ψT(R)ΨFN(R) = |ψT(R) | |ΨFN(R) |

Same nodal surface: fixed-node approximation     
(if nodes are exact then  and  )

EFN ≥ EF
0

ΨFN(R) = ΨF
0(r) EFN = EF

0

When walkers allowed to cross nodes

fermion sign problem



Possible solution: improve wf using neural-network methods

Papers containing neural-network and  
quantum Monte-Carlo in abstract



Fixed-node approximation and choice of trial wf as a resource 
Trial state determines phase

€ 

ΨT = f↑↓(ri ′ i )
i, ′ i 
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Normal state of fermions

Superfluid state of fermions

 nodes fixed by Slater determinant 
of plane waves  and  as in free Fermi gas 

 incompatible with ODLRO 

f↑↓(r) ≥ 0
D↑ D↓

⟶

 paired orbital  
(e.g. solution of 2-body problem) 

 compatible with ODLRO

ϕ(r) ≥ 0

⟶



EoS of normal Fermi gas



EoS as a function of polarization
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Fermi liquid EoS

Fermi liquid theory works up to  
For larger values   
• drop of magnetic susceptibility 
• presence of gap? 
• limit for pseudogap phase above Tc?

1/kFa ≃ 0.5
E(p) ∝ p



Experiments at ENS
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Bipolaron formation in a 1D Fermi gas

from Will et al. 2021

• Bath:1D Fermi gas (Tonks-Girardeau limit) 
• Two impurities: same mass and tunable interaction with bath 

If impurities are heavy:   
• Exact Born-Oppenheimer potential between 

static impurities mediated by bath 
(Casimir force between impurities) 

• Effective Schroedinger equation and look for  
bound states 

• Symmetric bound state always present, anti 
symmetric bound state only if  large enough 
 

M ≫ m
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Exact calculation using DMC

Bipolaron energy: E2 = E(N + 2) − E(N ) − 2E1

• at large mass ratio  one recovers BO results 
• calculation for fermionic impurities is also exact (no sign problem in 1D) 
• effective mass of bipolaron and transport properties

M/m

Preliminary results



Conclusions 

Overview of FN-DMC methods to interacting fermions 
• Itinerant ferromagnetism 
• EoS of superfluid fermions 
• Strongly interacting Fermi liquid 
• Bipolaron formation in a Fermi gas 

Sign problem can be systematically attenuated 
using neural-network quantum states 

Choice of many-body nodal surface can be used to 
discriminate quantum phases



main collaborations 

• UPC Barcelona 
J. Boronat                    G. Astrakharchik             J. Casulleras                     

     

• U. Camerino                                CNRS Grenoble 
S. Pilati                                      M. Holzmann 

• INRIM (Torino) 
G. Bertaina



Thank you for your attention


