

Fermi statistics and many-body physics: a quantum Monte-Carlo perspective

S. Giorgini (Pitaevskii Center - Trento)

BOSE EINSTEIN CONDENSATION

Fermi Legacy in Low Energy Physics
Accademia Nazionale dei Lincei
Roma 3-5 February 2026

CNR – Istituto Nazionale di Ottica
Pitaevskii Center on Bose-Einstein Condensation
Dipartimento di Fisica – Università di Trento

Basic facts about QMC methods

- **Exact numerical solution of many-body Schrödinger equation using stochastic algorithms**
- **Microscopic Hamiltonian of N identical particles**

$$H = -\frac{\hbar^2}{2m} \sum_{i=1}^N \nabla_i^2 + \sum_{i=1}^N U(\mathbf{r}_i) + \sum_{i>j=1}^N V(r_{ij})$$

- **No constraints on geometry, dimensionality and strength of interaction**
- **Systematic errors under control (time-step discretization, finite-size effects, ...)**
- **Results subject to statistical uncertainty**
- **T=0 (ground state), finite T (thermodynamics), continuous space and lattice models**

Diffusion Monte Carlo (Projection method): continuous space - ground state

Path Integral Monte Carlo: continuous space - thermodynamics

Auxiliary field Monte Carlo: lattice models - thermodynamics (attractive Hubbard, half-filled repulsive Hubbard,...)

First applications of Projection Monte-Carlo

Bosons: liquid helium

PHYSICAL REVIEW A

VOLUME 9, NUMBER 5

MAY 1974

Helium at zero temperature with hard-sphere and other forces

M. H. Kalos*

Courant Institute of Mathematical Sciences, New York University, New York, New York 10012

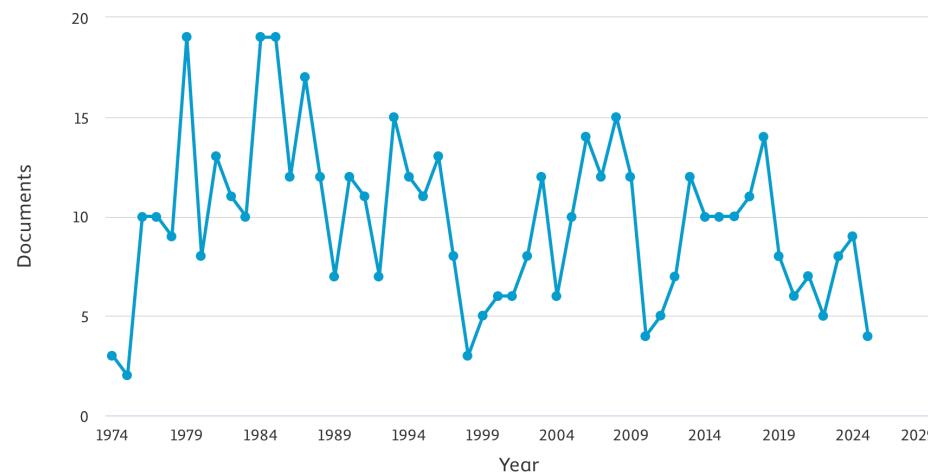
D. Levesque and L. Verlet

Laboratoire de Physique Théorique et Hautes Energies, Orsay, France †

(Received 22 August 1973)

Total of 509 citations

Documents by year



Problem rapidly solved

Fermions: electron gas

VOLUME 45, NUMBER 7

PHYSICAL REVIEW LETTERS

18 AUGUST 1980

Ground State of the Electron Gas by a Stochastic Method

D. M. Ceperley

National Resource for Computation in Chemistry, Lawrence Berkeley Laboratory, Berkeley, California 94720

and

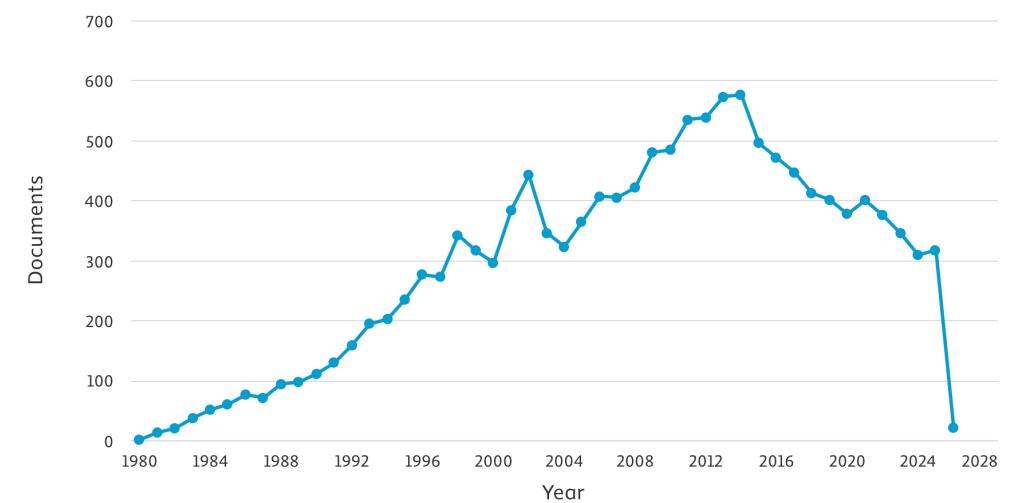
B. J. Alder

Lawrence Livermore Laboratory, University of California, Livermore, California 94550

(Received 16 April 1980)

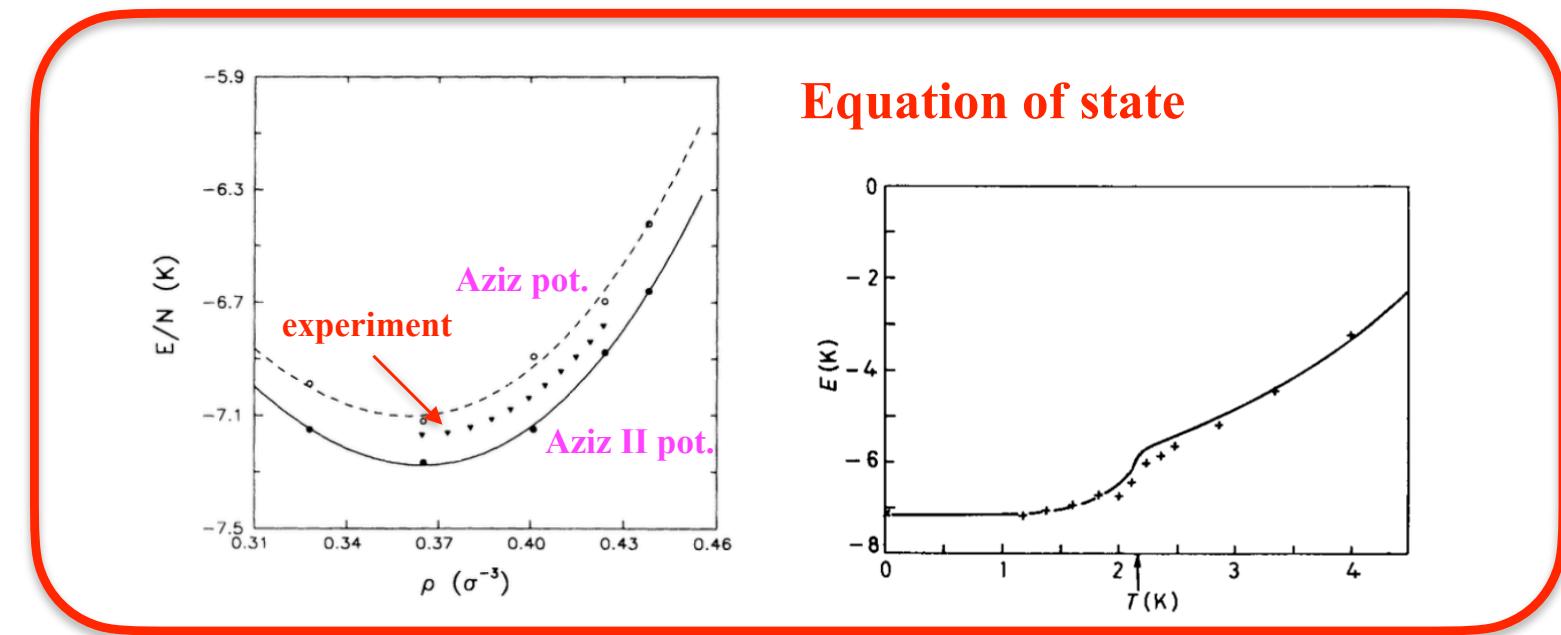
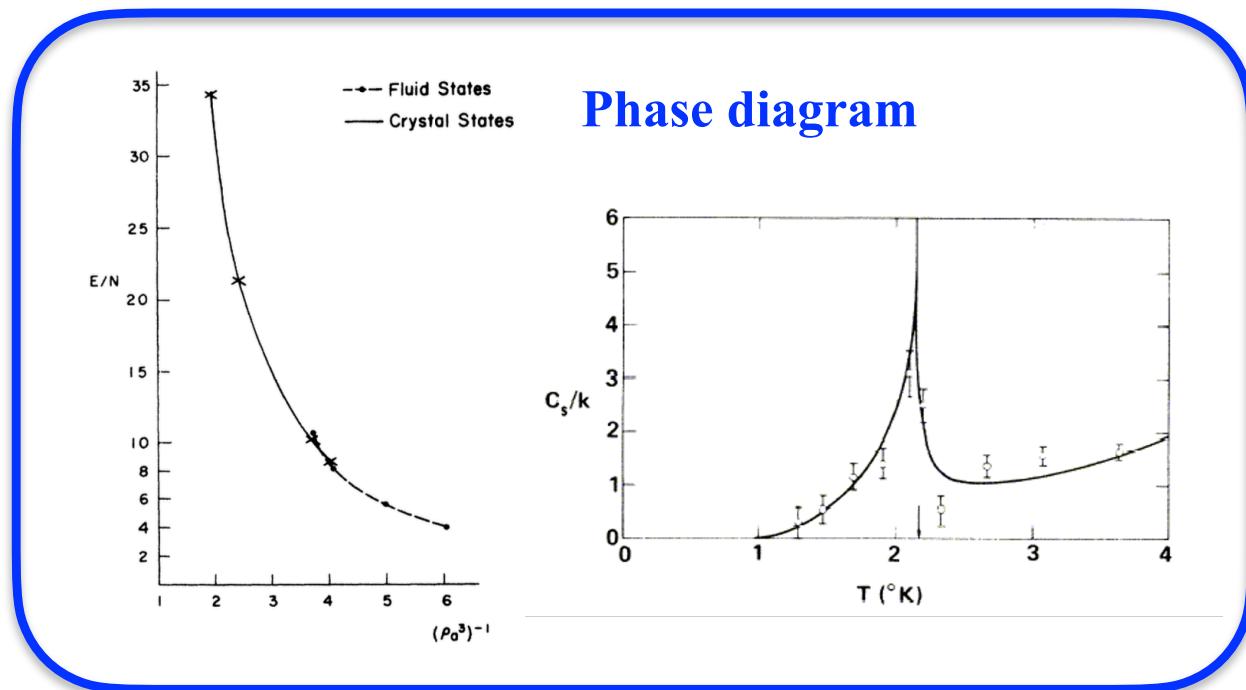
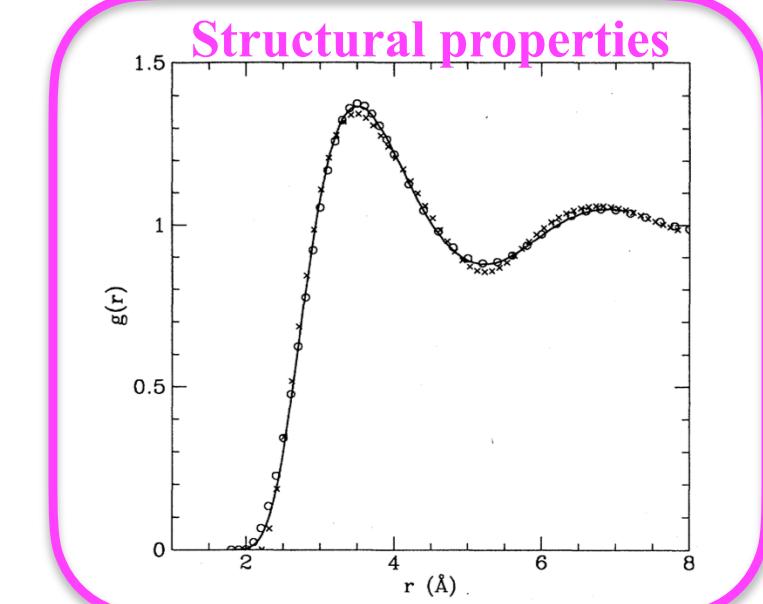
Total of 13700 citations

Documents by year



Problem still open

Liquid ^4He



Jellium model

Z. Phys. 57, 545 (1929)

**Bemerkung zur Elektronentheorie des Ferromagnetismus
und der elektrischen Leitfähigkeit.**

Von **F. Bloch** in Zürich.

(Eingegangen am 21. Juni 1929.)

Es wird auf die Möglichkeit hingewiesen, den Ferromagnetismus auf die Leitungselektronen zurückzuführen. Für sein Eintreten ist dann u. a. deren Nullpunktsenergie wesentlich. Bei dieser Gelegenheit wird eine elementare Ableitung der Formeln für Energieschwerpunkt und Multiplizität der verschiedenen Termsysteme bei beliebiger Ausgangsbesetzung der Zellen angegeben.

Hartree-Fock theory

Ferromagnetic ground state $n_{\uparrow} = n$

$$\frac{E_{ferro}}{N} = \frac{3}{5} 2^{2/3} \epsilon_F - \frac{3}{4} 2^{1/3} \frac{k_F e^2}{\pi}$$

Paramagnetic ground state $n_{\uparrow} = n_{\downarrow} = n/2$
direct (Hartree) term canceled by background,
exchange (Fock) term contributes

$$\frac{E_{para}}{N} = \frac{3}{5} \epsilon_F - \frac{3}{4} \frac{k_F e^2}{\pi}$$

If $k_F a_0 < 0.35$ then
 $E_{ferro} < E_{para}$ ($r_s > 5.5$)

Z. Phys. 52, 555 (1928)

Über die Quantenmechanik der Elektronen in Kristallgittern.

Von **Felix Bloch** in Leipzig.

Mit 2 Abbildungen. (Eingegangen am 10. August 1928.)

Die Bewegung eines Elektrons im Gitter wird untersucht, indem wir uns dieses durch ein zunächst streng dreifach periodisches Kraftfeld schematisieren. Unter Hinzunahme der Fermischen Statistik auf die Elektronen gestattet unser Modell Aussagen über den von ihnen herrührenden Anteil der spezifischen Wärme des Kristalls. Ferner wird gezeigt, daß die Berücksichtigung der thermischen Gitterschwingungen Größenordnung und Temperaturabhängigkeit der elektrischen Leitfähigkeit von Metallen in qualitativer Übereinstimmung mit der Erfahrung ergibt.

Einleitung. Die Elektronentheorie der Metalle hat seit einiger Zeit Fortschritte zu verzeichnen, die in der Anwendung quantentheoretischer Prinzipien auf das Elektronengas begründet sind. Zunächst hat Pauli* unter der Annahme, daß die Metallelektronen sich völlig frei im Gitter bewegen können und der Fermischen** Statistik gehorchen, den temperaturunabhängigen Paramagnetismus der Alkalien zu erklären vermocht. Die elektrischen und thermischen Eigenschaften des Elektronengases sind dann von Sommerfeld, Houston und Eckart*** näher untersucht worden. Die Tatsache freier Leitungselektronen wird von ihnen als gegeben betrachtet und ihre Wechselwirkung mit dem Gitter nur durch eine zunächst phänomenologisch eingeführte, dann von Houston**** strenger begründete freie Weglänge mitberücksichtigt. Schließlich hat Heisenberg† gezeigt, daß im anderen Grenzfall, wo zunächst die Elektronen an die Ionen im Gitter gebunden gedacht und erst in nächster Näherung die Austauschvorgänge unter ihnen berücksichtigt werden, das für den Ferromagnetismus entscheidende intermolekulare Feld seine Erklärung findet.

Z. Phys. 36, 902 (1926)

Zur Quantelung des idealen einatomigen Gases¹⁾.

Von E. Fermi in Florenz.

(Eingegangen am 24. März 1926.)

Wenn der Nernstsche Wärmesatz auch für das ideale Gas seine Gültigkeit behalten soll, muß man annehmen, daß die Gesetze idealer Gase bei niedrigen Temperaturen von den klassischen abweichen. Die Ursache dieser Entartung ist in einer Quantelung der Molekularbewegungen zu suchen. Bei allen Theorien der Entartung werden immer mehr oder weniger willkürliche Annahmen über das statistische Verhalten der Moleküle, oder über ihre Quantelung gemacht. In der vorliegenden Arbeit wird nur die von Pauli zuerst ausgesprochene und auf zahlreiche spektroskopische Tatsachen begründete Annahme benutzt, daß in einem System nie zwei gleichwertige Elemente vorkommen können, deren Quantenzahlen vollständig übereinstimmen. Mit dieser Hypothese werden die Zustandsgleichung und die innere Energie des idealen Gases abgeleitet; der Entropiewert für große Temperaturen stimmt mit dem Stern-Tetrodeschen überein.

In der klassischen Thermodynamik wird die Molekularwärme (bei konstantem Volumen)

$$c = \frac{3}{2} k T \quad (1)$$

gesetzt. Will man aber den Nernstschen Wärmesatz auch auf das ideale Gas anwenden können, so muß man (1) bloß als eine Näherung für große Temperaturen ansehen, da c im Limes für $T = 0$ verschwinden muß. Man ist deshalb genötigt, anzunehmen, daß die Bewegung der Moleküle idealer Gase gequantelt sei; diese Quantelung äußert sich bei niedrigen Temperaturen durch gewisse Entartungerscheinungen, so daß sowohl die spezifische Wärme als auch die Zustandsgleichung von ihren klassischen Ausdrücken abweichen werden.

Zweck der vorliegenden Arbeit ist, eine Methode für die Quantelung des idealen Gases darzustellen, welche nach unserem Erachten möglichst unabhängig von willkürlichen Annahmen über das statistische Verhalten der Gasmoleküle ist.

In neuerer Zeit wurden zahlreiche Versuche gemacht, die Zustandsgleichung idealer Gase festzustellen²⁾. Die Zustandsgleichungen der verschiedenen Verfasser und unsere unterscheiden sich voneinander und

¹⁾ Vgl. die vorläufige Mitteilung, *Lincei Rend.* (6) 3, 145, 1926.

²⁾ Vgl. z. B. A. Einstein, *Berl. Ber.* 1924, S. 261; 1925, S. 318; M. Planck, ebenda 1925, S. 49. Unsere Methode ist der Einsteinschen insofern verwandt, als die Annahme der statistischen Unabhängigkeit der Moleküle bei beiden Methoden verlassen wird, obgleich die Art der Abhängigkeit bei uns ganz anders ist wie bei Einstein, und das Endergebnis für die Abweichungen von der klassischen Zustandsgleichung sogar entgegengesetzt gefunden wird.

Jellium model

Z. Phys. 57, 545 (1929)

**Bemerkung zur Elektronentheorie des Ferromagnetismus
und der elektrischen Leitfähigkeit.**

Von **F. Bloch** in Zürich.

(Eingegangen am 21. Juni 1929.)

Es wird auf die Möglichkeit hingewiesen, den Ferromagnetismus auf die Leitungselektronen zurückzuführen. Für sein Eintreten ist dann u. a. deren Nullpunktsenergie wesentlich. Bei dieser Gelegenheit wird eine elementare Ableitung der Formeln für Energieschwerpunkt und Multiplizität der verschiedenen Termsysteme bei beliebiger Ausgangsbesetzung der Zellen angegeben.

Hartree-Fock theory

Ferromagnetic ground state $n_{\uparrow} = n$

$$\frac{E_{ferro}}{N} = \frac{3}{5} 2^{2/3} \epsilon_F - \frac{3}{4} 2^{1/3} \frac{k_F e^2}{\pi}$$

Paramagnetic ground state $n_{\uparrow} = n_{\downarrow} = n/2$
direct (Hartree) term canceled by background,
exchange (Fock) term contributes

$$\frac{E_{para}}{N} = \frac{3}{5} \epsilon_F - \frac{3}{4} \frac{k_F e^2}{\pi}$$

If $k_F a_0 < 0.35$ then
 $E_{ferro} < E_{para}$ ($r_s > 5.5$)

Phase diagram of electron gas

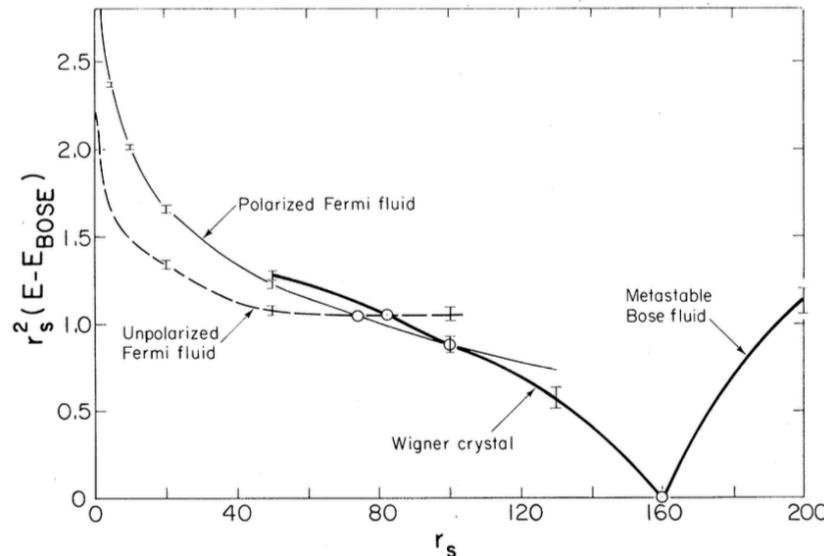


FIG. 2. The energy of the four phases studied relative to that of the lowest boson state times r_s^2 in rydbergs vs r_s in Bohr radii. Below $r_s = 160$ the Bose fluid is the most stable phase, while above, the Wigner crystal is most stable. The energies of the polarized and unpolarized Fermi fluid are seen to intersect at $r_s = 75$. The polarized (ferromagnetic) Fermi fluid is stable between $r_s = 75$ and $r_s = 100$, the Fermi Wigner crystal above $r_s = 100$, and the normal paramagnetic Fermi fluid below $r_s = 75$.

Ortiz, Harris and Ballone,
Phys. Rev. Lett. 1999

Partially polarized: $20 \leq r_s \leq 40$
Fully polarized: $40 \leq r_s \leq 100$

Zong, Liu and Ceperley,
Phys. Rev. E 2002

Partially polarized: $60 \leq r_s \leq 100$
Fully polarized: never

Ceperley and Alder,
Phys. Rev. Lett. 1980

Wigner crystal: $r_s > 100$

Fully polarized: $75 \leq r_s \leq 100$

Holzmann and Moroni,
Phys. Rev. Lett. 2020

Azadi and Drummond,
Phys. Rev. B 2024

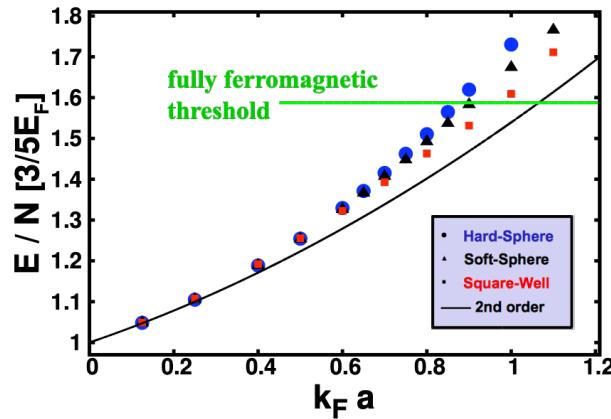
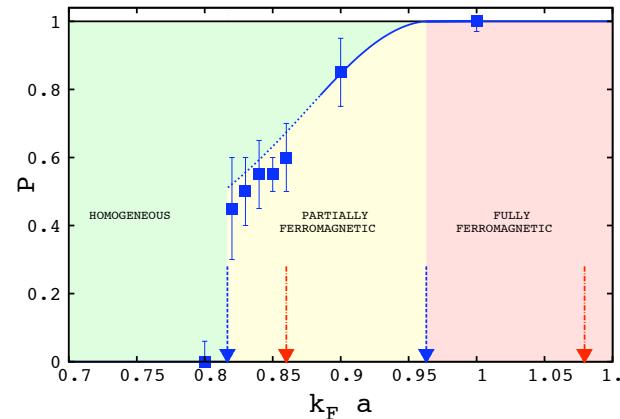
Ground state always
paramagnetic

Similar results for 2DEG, ^3He and 2D dipolar Fermi gas

→ No itinerant ferromagnetism

Ultracold atoms? Stoner model

Pilati et al. PRL (2010)



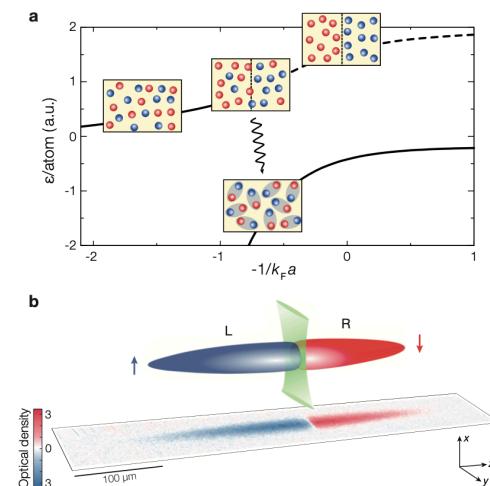
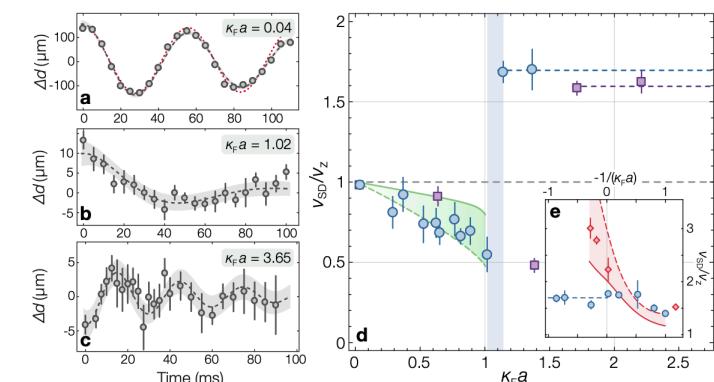
$$\frac{E_{para}}{N} = \frac{3}{5}\epsilon_F + \frac{2}{3\pi}\epsilon_F k_F a$$

$$\frac{E_{ferro}}{N} = \frac{3}{5}2^{2/3}\epsilon_F$$

HF theory predicts GS is partially polarized if

$$k_F a > \pi/2$$

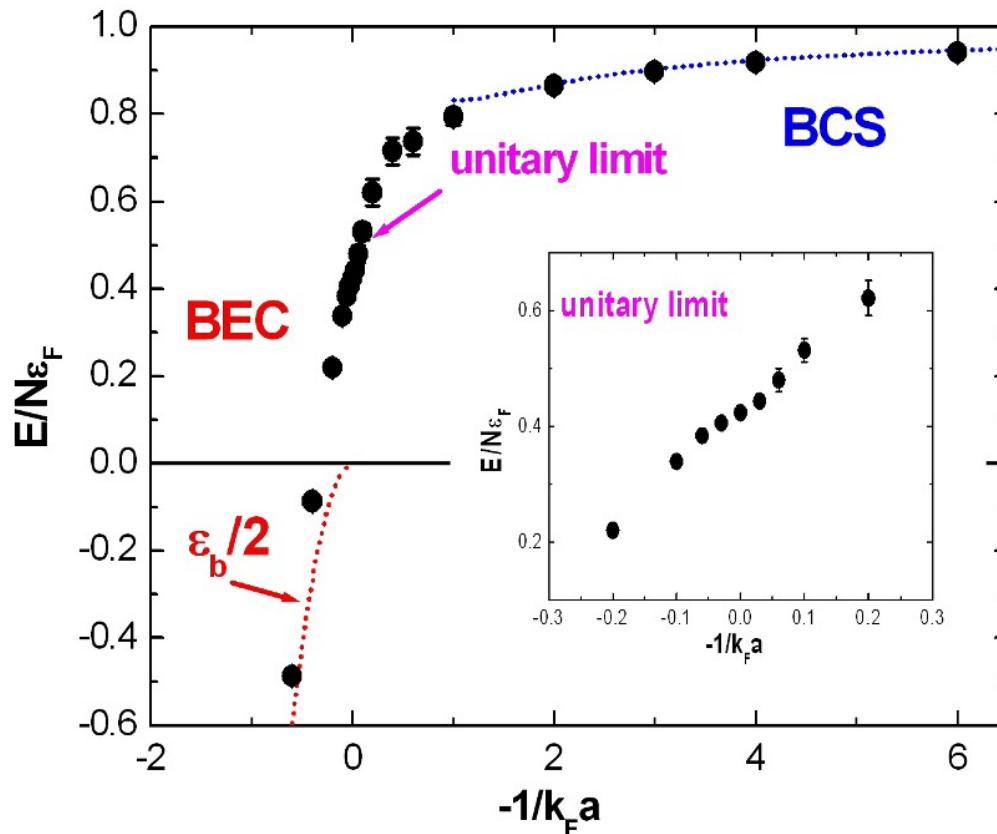
Evidence of ferromagnetic instability in a mixture of ^6Li atoms at $k_F a \simeq 1$
Valtolina et al. Nature Phys. 2017



BCS-BEC crossover of an attractive Fermi gas

Astrakharchik et al. PRL (2004)

see also next talk by Strinati



Experiments:

Paris: Nascimbene et al. Nature (2010)
 $\xi = 0.415(10)$

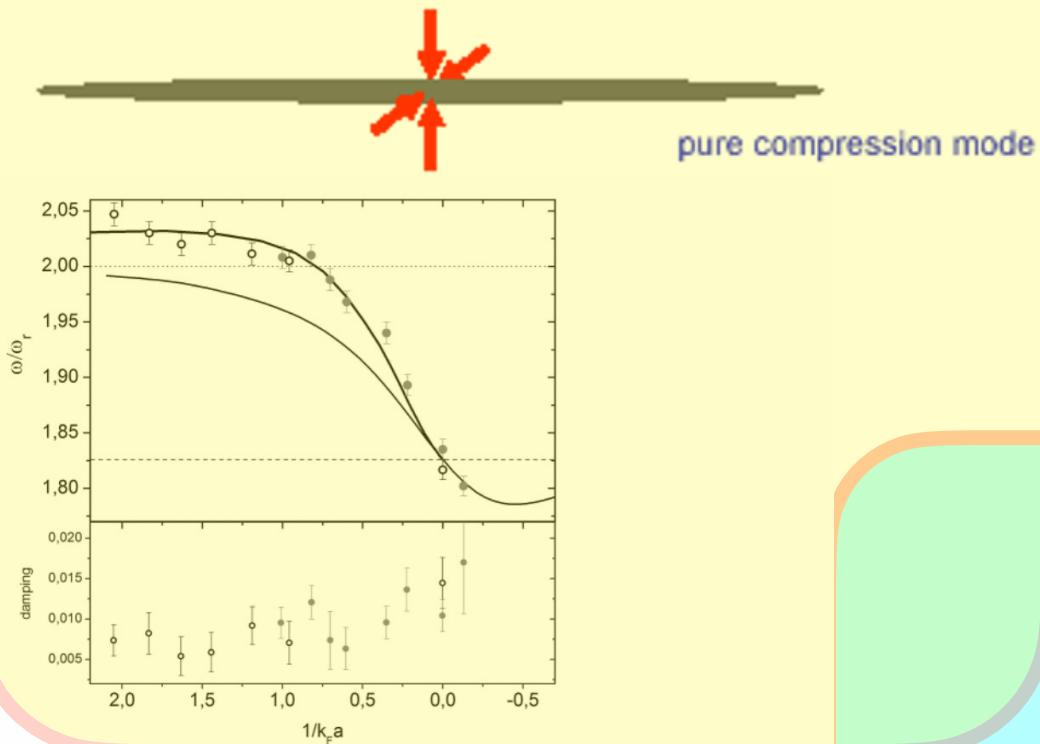
MIT: Ku et al. Science (2012)
 $\xi = 0.376(5)$

Unitary limit $\frac{1}{k_F a} = 0$
EoS: $E/N = \frac{3}{5} \xi \epsilon_F$
 ξ is the Bertsch parameter

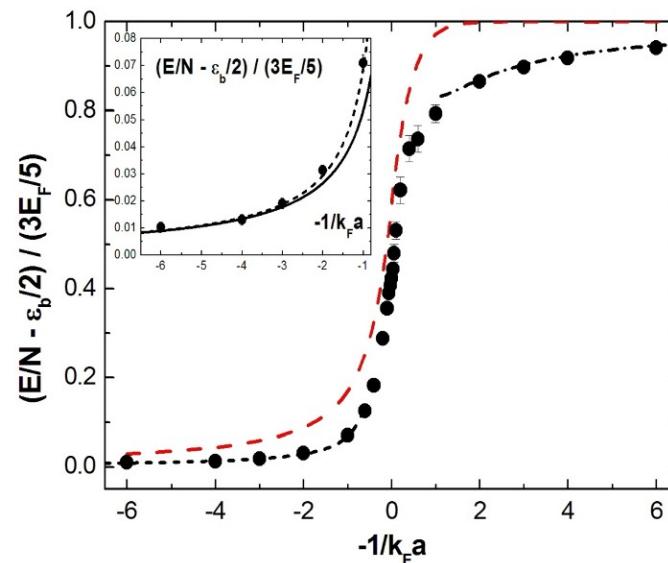
Carlson et al. (2003)
 $\xi = 0.44(1)$ - FN-DMC
Astrakharchik et al. (2004)
 $\xi = 0.42(1)$ - FN-DMC
Gandolfi et al. (2011)
 $\xi = 0.3923(4)$ - FN-DMC
Carlson et al. (2011)
 $\xi = 0.372(5)$ - AFQMC

Experiments testing the EoS

Radial compression mode:
(Altmeyer et al. 2007)



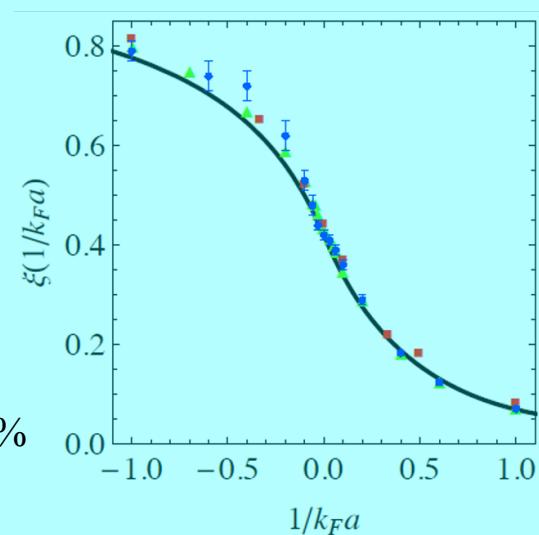
Astrakharchik et al. PRL (2004)



Grand-canonical EoS from density profiles
(Navon et al. 2010)

$$P(\mu(z), a) = \frac{m\omega_r^2}{2\pi} n(z)$$

At unitarity ($1/kFa=0$)
2% accuracy $\xi = 0.41(1)$
overall accuracy better than 5%



Take-home message on QMC methods

- Bosons: QMC methods are exact (both at $T=0$ and finite T). Only limited by size of system (N ranges from few hundreds to few thousands)
- Fermions: QMC methods are not exact (at $T=0$ upper bound on GS energy). Accuracy can not be established a priori.

Projection Monte Carlo (Diffusion MC)

Schroedinger equation in imaginary time $\tau = it/\hbar$

$$-\partial_\tau |\psi(\tau)\rangle = (H - E_{ref}) |\psi(\tau)\rangle \quad \text{and} \quad |\psi(\tau)\rangle = e^{-\tau(H-E_{ref})} |\psi(0)\rangle$$

if at the initial time $|\psi(0)\rangle$ is not orthogonal to the ground state $|\psi_0\rangle$

$$|\psi(0)\rangle = \sum_n a_n |\psi_n\rangle$$

for larger times

$$|\psi(\tau)\rangle = \sum_n e^{-\tau(E_n - E_{ref})} |\psi_n\rangle \xrightarrow{\tau \rightarrow \infty} a_0 e^{-\tau(E_0 - E_{ref})} |\psi_0\rangle$$

The ground state component decays with the slowest rate. If the reference energy is chosen such that $E_{ref} = E_0$ at large times the wavefunction is proportional to the exact ground state

$$|\psi(\tau \rightarrow \infty)\rangle = a_0 |\psi_0\rangle$$

Algorithm

- Algorithm is iterative: state in coordinate representation $\psi(\mathbf{R}, \tau) = \langle \mathbf{R} | \psi(\tau) \rangle$

$$\psi(\mathbf{R}, \tau + \delta\tau) = \int d\mathbf{R}' \langle \mathbf{R} | e^{-\delta\tau(H - E_{ref})} | \mathbf{R}' \rangle \psi(\mathbf{R}', \tau)$$

(approximation for propagator $\langle \mathbf{R} | e^{-\delta\tau(T + V - E_{ref})} | \mathbf{R}' \rangle \simeq e^{-\delta\tau(V(\mathbf{R}) - E_{ref})/2} \langle \mathbf{R} | e^{-\delta\tau T} | \mathbf{R}' \rangle e^{-\delta\tau(V(\mathbf{R}') - E_{ref})/2}$ exact if $\delta\tau \rightarrow 0$, but large fluctuations in the potential energy $V(\mathbf{R})$)

- Importance sampling via a guiding function $f(\mathbf{R}, \tau) = \psi_T(\mathbf{R})\psi(\mathbf{R}, \tau)$

$$f(\mathbf{R}, \tau + \delta\tau) = \int d\mathbf{R}' \langle \mathbf{R} | e^{-\delta\tau(H - E_{ref})} | \mathbf{R}' \rangle \frac{\psi_T(\mathbf{R})}{\psi_T(\mathbf{R}')'} f(\mathbf{R}', \tau)$$

$$G(\mathbf{R}, \mathbf{R}', \delta\tau) = \langle \mathbf{R} | e^{-\delta\tau \mathcal{L}} | \mathbf{R}' \rangle e^{-\delta\tau \left(\frac{E_L(\mathbf{R}) + E_L(\mathbf{R}')}{2} - E_{ref} \right)}$$

$\mathcal{L} = -\frac{\hbar^2}{2m} \left(\nabla_{\mathbf{R}}^2 + 2\nabla_{\mathbf{R}} \cdot \frac{\nabla_{\mathbf{R}} \psi_T(\mathbf{R})}{\psi_T(\mathbf{R})} \right)$ Langevin operator (diffusion+drift) and $E_L(\mathbf{R}) = \frac{H\psi_T(\mathbf{R})}{\psi_T(\mathbf{R})}$ local energy

Fluctuations in $E_L(\mathbf{R})$ much reduced compared to $V(\mathbf{R})$!

- Walkers distributed according to $f(\mathbf{R}, \tau)$

$$N_W(\tau) = \int d\mathbf{R} f(\mathbf{R}, \tau)$$

evolve from $\mathbf{R}' \rightarrow \mathbf{R}$ according to diffusion, drift and branching $e^{-\delta\tau \left(\frac{E_L(\mathbf{R}) + E_L(\mathbf{R}')}{2} - E_{ref} \right)}$

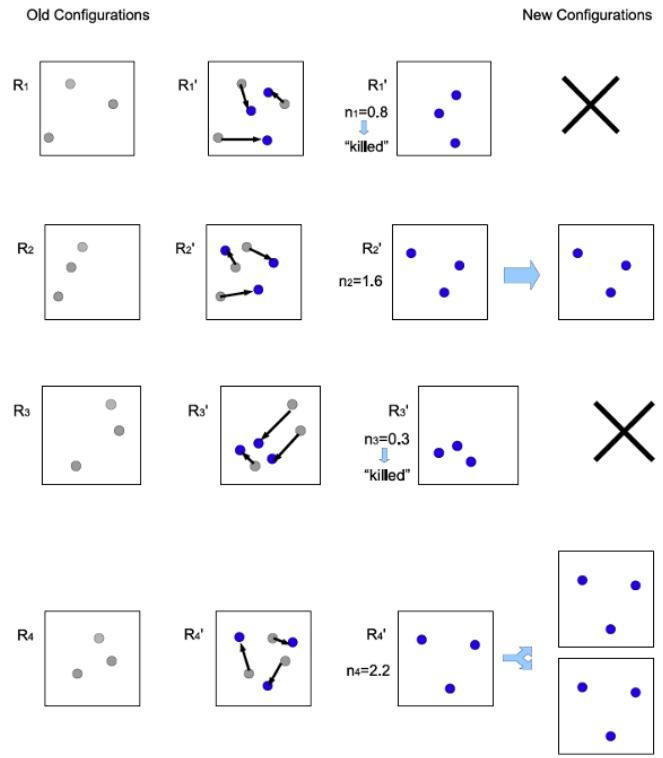
Normalization changes!

A. Diffusion: walkers explore configuration space

B. Drift: walkers pushed where ψ_T is largest

C. Branching: i-th iteration walker \mathbf{R} is replicated n_i times

$$n_i = \text{int} \left[\exp \left\{ -\delta\tau \left(\frac{E_L(\mathbf{R}_i) + E_L(\mathbf{R}'_i)}{2} - E_T \right) \right\} + \zeta \right]$$



Systematic errors:

- a) time step $\delta\tau$ small enough
- b) number of walkers N_W large enough

After long projection time

For large times, the pdf $f(\mathbf{R})$ is proportional to the ground state:

$$\lim_{\tau \rightarrow \infty} f(\mathbf{R}, \tau) = \lim_{n \rightarrow \infty} f_n(\mathbf{R}) = \psi_T(\mathbf{R}) \phi_0(\mathbf{R}).$$

Exact ground state energy

The Monte-Carlo estimate of the expectation value of the energy is given by

$$\begin{aligned} \frac{1}{N_w} \sum_{i=1}^{N_w} E_L(\mathbf{R}_i) &= \frac{\int d\mathbf{R} f(\mathbf{R}, \tau \rightarrow \infty) E_L(\mathbf{R})}{\int d\mathbf{R} f(\mathbf{R}, \tau \rightarrow \infty)} \\ &= \frac{\int d\mathbf{R} \psi_T(\mathbf{R}) \phi_0(\mathbf{R}) \frac{1}{\psi_T(\mathbf{R})} H \psi_T(\mathbf{R})}{\int d\mathbf{R} f(\mathbf{R}, \tau \rightarrow \infty)} = E_0 \end{aligned}$$

Walkers distributed according to pdf $f(R, \tau)$

$$f(R, \tau) \geq 0$$

density of walkers at time τ

$$f(R, \tau \rightarrow \infty) = \psi_T(R) \Psi_0(R) \geq 0$$

GS of bosons	$\Psi_0^B(R) \geq 0$
GS of fermions	$\Psi_0^F(R) \gtrless 0$

For fermions $\psi_T(R)$ must be antisymmetric such that

$$f(R, \tau \rightarrow \infty) = \psi_T(R) \Psi_{FN}(R) = |\psi_T(R)| |\Psi_{FN}(R)|$$

Same nodal surface: fixed-node approximation $E_{FN} \geq E_0^F$
(if nodes are exact then $\Psi_{FN}(R) = \Psi_0^F(r)$ and $E_{FN} = E_0^F$)

When walkers allowed to cross nodes

$$\frac{\sqrt{\sigma^2}}{|E_0^F|} \sim \frac{1}{\sqrt{N_W}} e^{N\tau \frac{E_0^F - E_0^B}{N}}$$

fermion sign problem

Possible solution: improve wf using neural-network methods

communications physics

Article

<https://doi.org/10.1038/s42005-024-01613-w>

Neural-network quantum states for ultra-cold Fermi gases

Check for updates

Jane Kim^{1,9}, Gabriel Pescia^{2,3}, Bryce Fore⁴, Jannes Nys^{2,3}, Giuseppe Carleo^{2,3},
Stefano Gandolfi⁵, Morten Hjorth-Jensen^{1,6} & Alessandro Lovato^{4,7,8}

Superconductivity in the two-dimensional Hubbard model revealed by neural quantum states

Christopher Roth,¹ Ao Chen,^{1,2,3} Anirvan Sengupta,^{1,4,5} and Antoine Georges^{1,6,7,8}

¹Center for Computational Quantum Physics, Flatiron Institute, New York 10010, USA

²Division of Chemistry and Chemical Engineering,

California Institute of Technology, Pasadena, California 91125, USA

³Center for Electronic Correlations and Magnetism,

University of Augsburg, 86135 Augsburg, Germany

⁴Center for Computational Mathematics, Flatiron Institute,

162 5th Avenue, New York, New York 10010, USA

⁵Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA

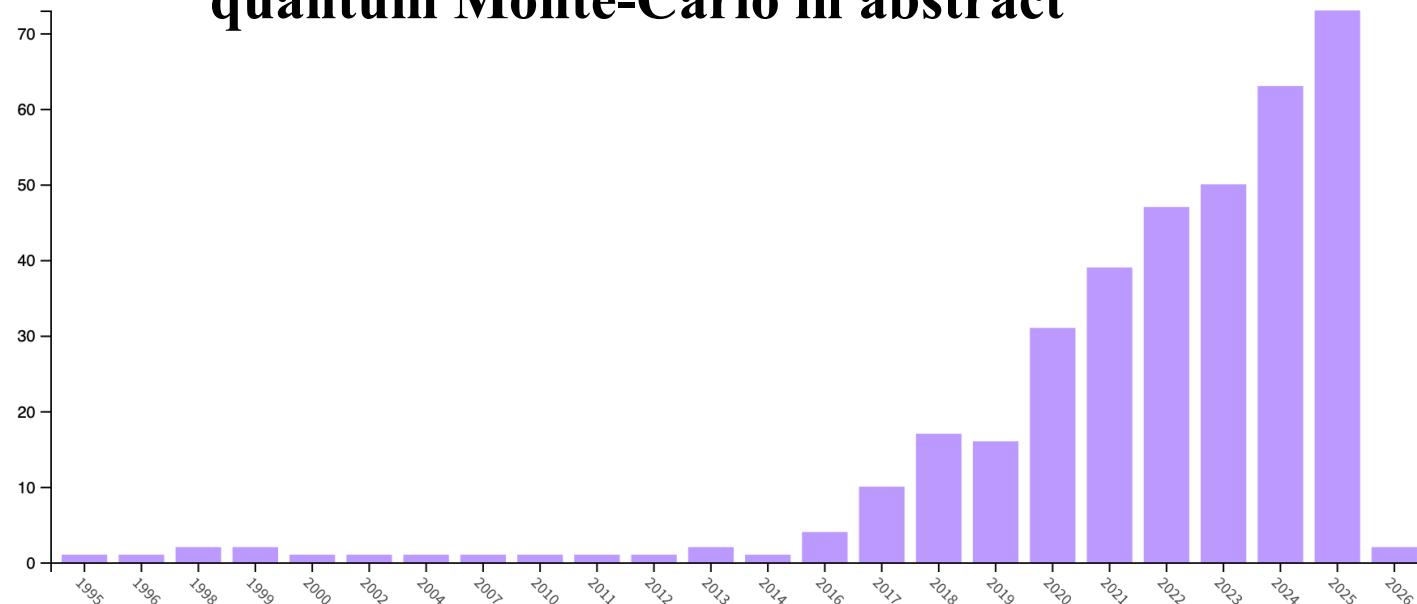
⁶Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France

⁷CPHT, CNRS, École Polytechnique, IP Paris, F-91128 Palaiseau, France

⁸DQMP, Université de Genève, 24 quai Ernest Ansermet, CH-1211 Genève, Suisse

(Dated: November 12, 2025)

Papers containing neural-network and quantum Monte-Carlo in abstract



Fixed-node approximation and choice of trial wf as a resource

Trial state determines phase

Normal state of fermions

$$\Psi_T = \prod_{i,i'} f_{\uparrow\downarrow}(r_{ii'}) D_{\uparrow}(N_{\uparrow}) D_{\downarrow}(N_{\downarrow})$$

$f_{\uparrow\downarrow}(r) \geq 0$ nodes fixed by Slater determinant
of plane waves D_{\uparrow} and D_{\downarrow} as in free Fermi gas
→ incompatible with ODLRO

$$D_{\uparrow}(N_{\uparrow}) = \begin{vmatrix} e^{i\mathbf{k}_{\alpha}\cdot\mathbf{r}_1} e^{i\mathbf{k}_{\alpha}\cdot\mathbf{r}_2} \dots e^{i\mathbf{k}_{\alpha}\cdot\mathbf{r}_{N_{\uparrow}}} \\ e^{i\mathbf{k}_{\beta}\cdot\mathbf{r}_1} e^{i\mathbf{k}_{\beta}\cdot\mathbf{r}_2} \dots e^{i\mathbf{k}_{\beta}\cdot\mathbf{r}_{N_{\uparrow}}} \\ \dots \dots \dots \dots \dots \dots \end{vmatrix}$$

Superfluid state of fermions

$$\Psi_{BCS} = \begin{vmatrix} \phi(\mathbf{r}_{11'}) \phi(\mathbf{r}_{21'}) \dots \phi(\mathbf{r}_{N_{\uparrow}1'}) \\ \phi(\mathbf{r}_{12'}) \phi(\mathbf{r}_{22'}) \dots \phi(\mathbf{r}_{N_{\uparrow}2'}) \\ \dots \dots \dots \dots \dots \dots \end{vmatrix}$$

$\phi(r) \geq 0$ paired orbital
(e.g. solution of 2-body problem)
→ compatible with ODLRO

Fermi-Liquid Behavior of the Normal Phase of a Strongly Interacting Gas of Cold Atoms

S. Nascimbène,^{1,*} N. Navon,¹ S. Pilati,² F. Chevy,¹ S. Giorgini,³ A. Georges,^{4,5} and C. Salomon¹

¹Laboratoire Kastler Brossel, CNRS, UPMC, École Normale Supérieure, 24 rue Lhomond, 75231 Paris, France

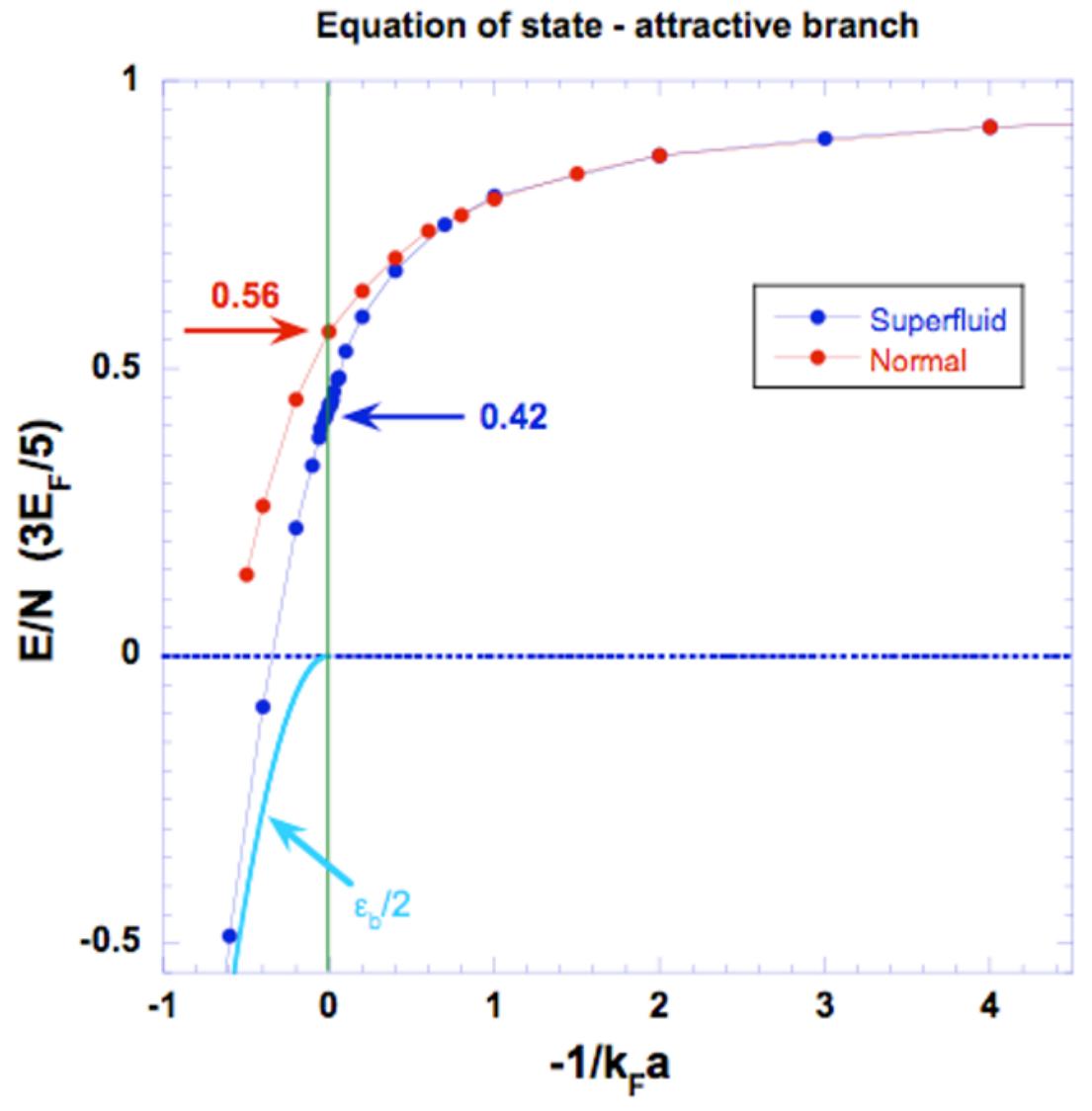
²Theoretische Physik, ETH Zurich, CH-8093 Zurich, Switzerland

³Dipartimento di Fisica, Università di Trento and INO-CNR BEC Center, I-38050 Povo, Trento, Italy

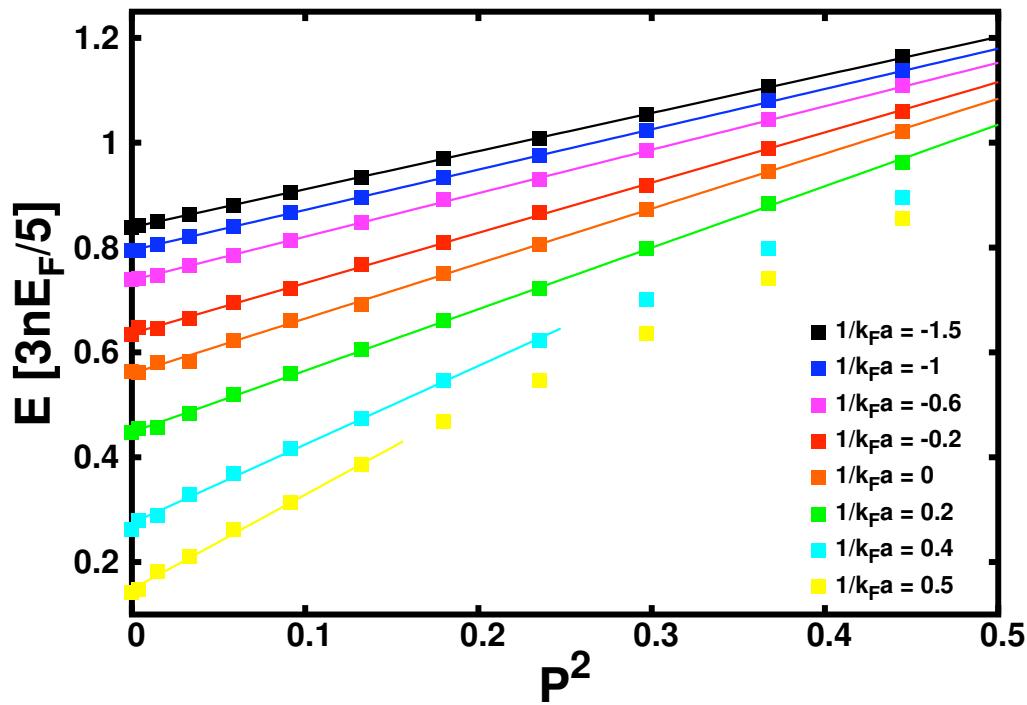
⁴Centre de Physique Théorique, CNRS, Ecole Polytechnique, route de Saclay, 91128 Palaiseau Cedex, France

⁵Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France

(Received 26 January 2011; revised manuscript received 6 April 2011; published 27 May 2011)



EoS as a function of polarization



$$p = \frac{N_\uparrow - N_\downarrow}{N_\uparrow + N_\downarrow}$$

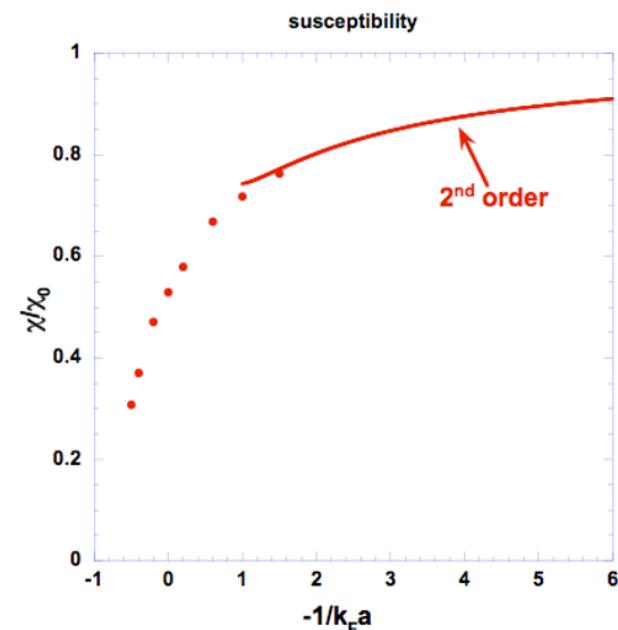
Fermi liquid EoS

$$\frac{E(p)}{N} = \frac{3}{5} \epsilon_F \left(\xi_N + \frac{5}{9} \chi^{-1} p^2 + \dots \right)$$

Fermi liquid theory works up to $1/k_F a \simeq 0.5$

For larger values $E(p) \propto p$

- drop of magnetic susceptibility
- presence of gap?
- limit for pseudogap phase above T_c ?



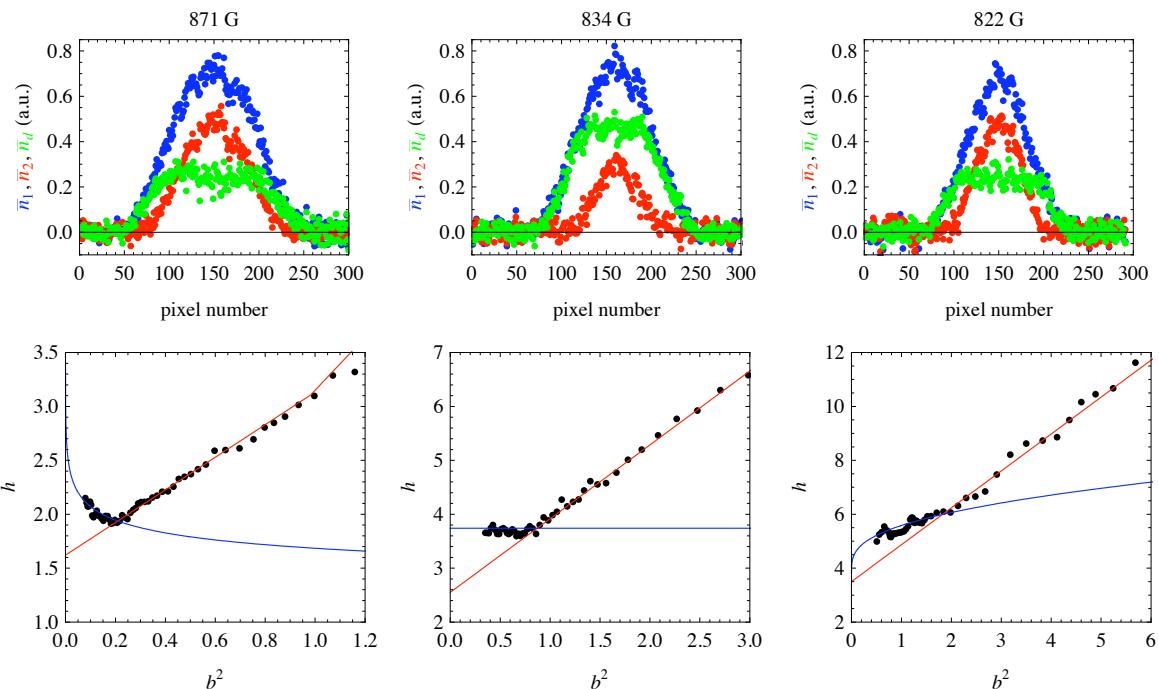
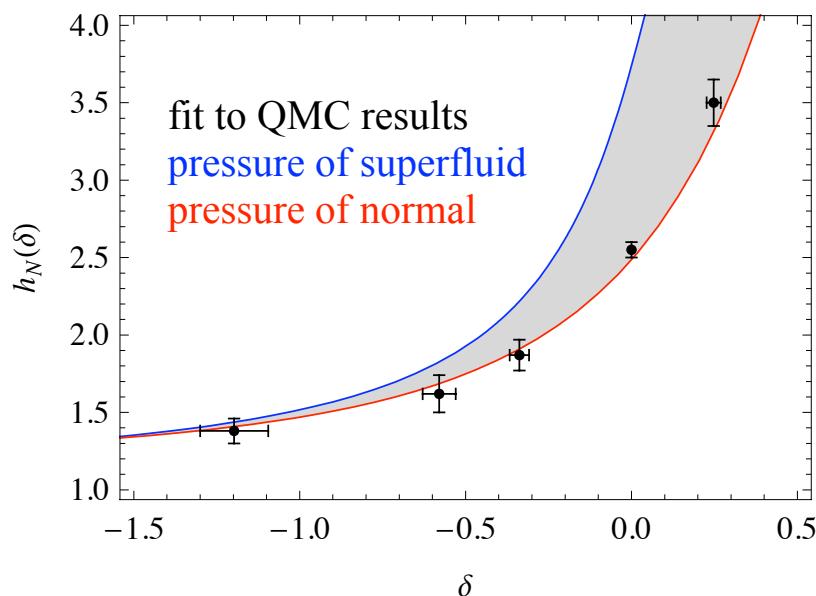
Experiments at ENS

Pressure as a function of

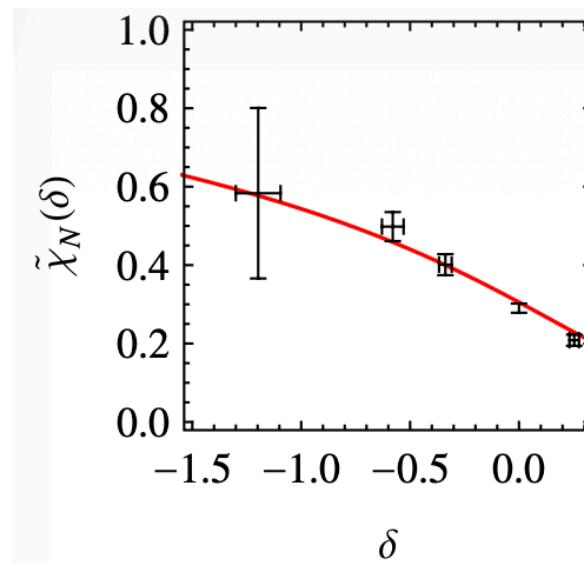
$$b = \frac{\mu_{\uparrow} - \mu_{\downarrow}}{\mu_{\uparrow} + \mu_{\downarrow}}$$

$b < b_c$: SF phase
(plateau in column $n_{\uparrow} - n_{\downarrow}$)

$b > b_c$: Normal phase



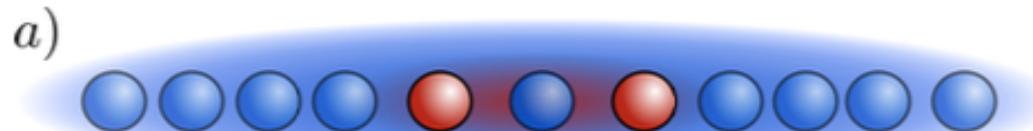
Drop in magnetic susceptibility



Bipolaron formation in a 1D Fermi gas

- Bath: 1D Fermi gas (Tonks-Girardeau limit)
- Two impurities: same mass and tunable interaction with bath

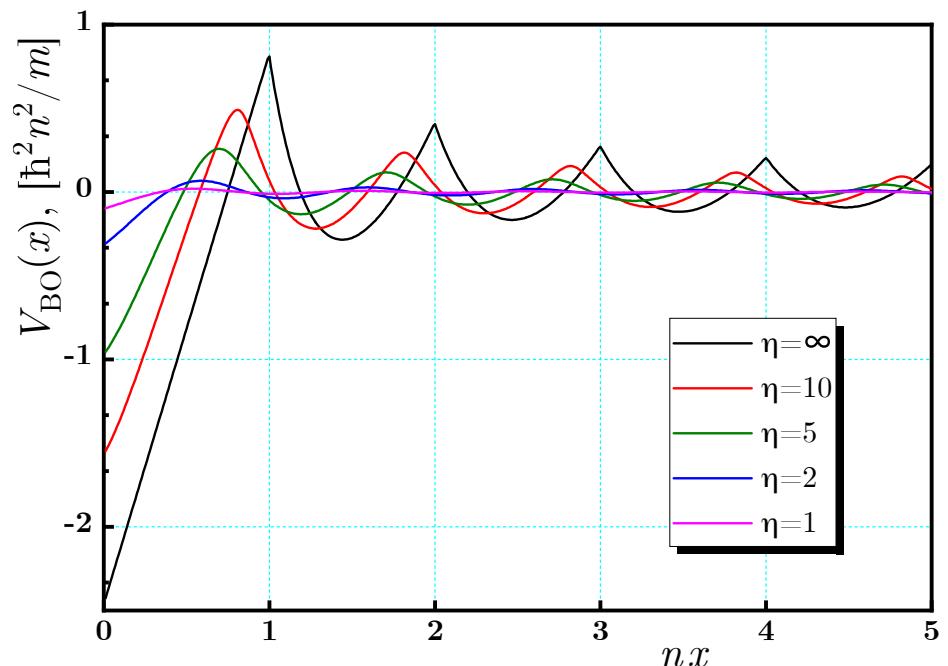
from Will et al. 2021



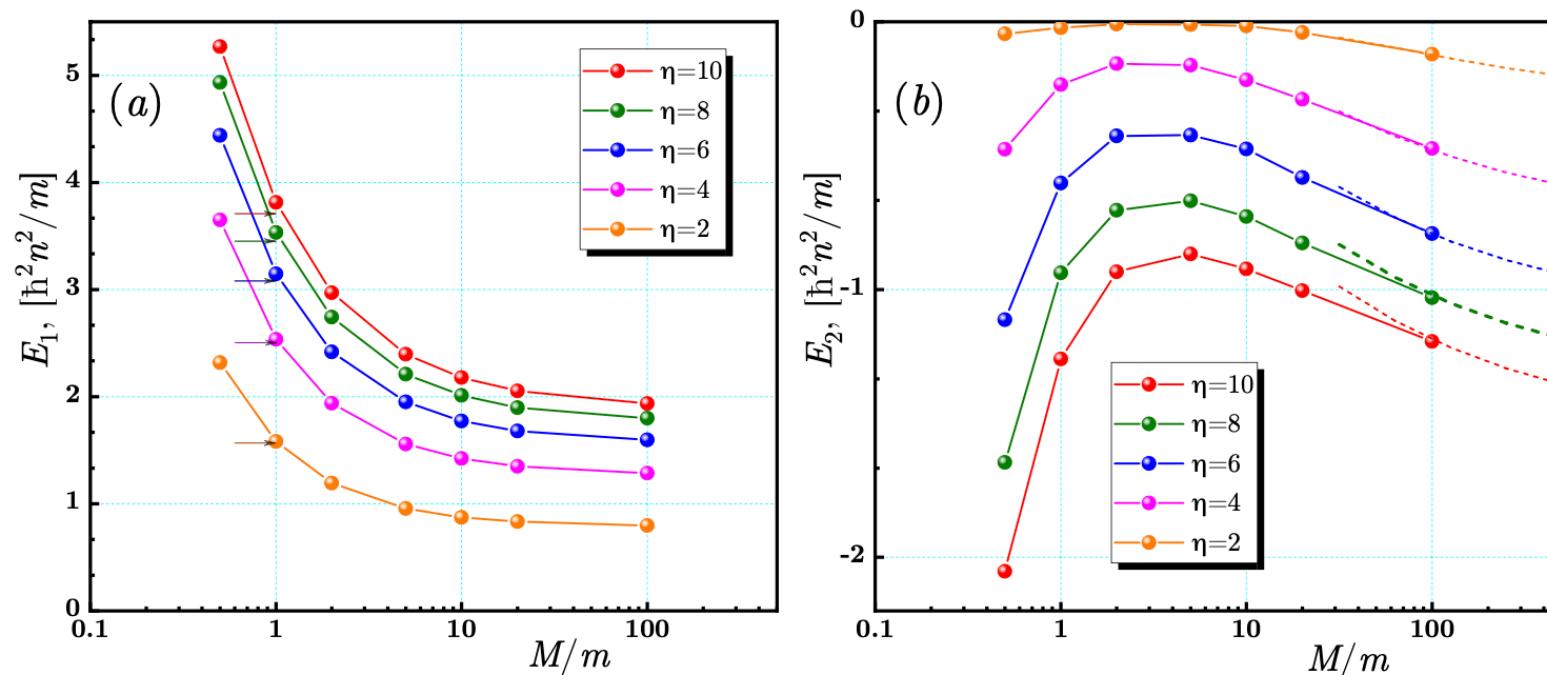
Coupling to bath: $V = \tilde{g} \sum_{i=1}^N (\delta(x_i - X_1) + \delta(x_i - X_2))$ $\eta = \frac{\tilde{g}m}{\hbar n}$

If impurities are heavy: $M \gg m$

- Exact Born-Oppenheimer potential between static impurities mediated by bath (Casimir force between impurities)
- Effective Schrödinger equation and look for bound states
- Symmetric bound state always present, anti-symmetric bound state only if M large enough



Bipolaron energy: $E_2 = E(N+2) - E(N) - 2E_1$



- at large mass ratio M/m one recovers BO results
- calculation for fermionic impurities is also exact (no sign problem in 1D)
- effective mass of bipolaron and transport properties

Conclusions

Overview of FN-DMC methods to interacting fermions

- Itinerant ferromagnetism
- EoS of superfluid fermions
- Strongly interacting Fermi liquid
- Bipolaron formation in a Fermi gas

Sign problem can be systematically attenuated using neural-network quantum states

Choice of many-body nodal surface can be used to discriminate quantum phases

main collaborations

- **UPC Barcelona**

J. Boronat

G. Astrakharchik

J. Casulleras

- **U. Camerino**

S. Pilati

CNRS Grenoble

M. Holzmann

- **INRIM (Torino)**

G. Bertaina

Thank you for your attention