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Basic facts about QMC methods

Exact numerical solution of many-body Schrodinger equation using
stochastic algorithms

Microscopic Hamiltonian of N identical particles
H= ——ZV2+ Z U(r) + Z V(r;)
i>j=1
No constraints on geometry, dimensionality and strength of interaction

Systematic errors under control (time-step discretization, finite-size effects,
vesr)

Results subject to statistical uncertainty

T=0 (ground state), finite T (thermodynamics), continuous space and lattice
models

Diffusion Monte Carlo (Projection method): continuous space - ground state
Path Integral Monte Carlo: continuous space - thermodynamics

Auxiliary field Monte Carlo: lattice models - thermodynamics (attractive Hubbard, half-filled
repulsive Hubbard.,...)



First applications of Projection Monte-Carlo

Bosons: liquid helium
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Fermions: electron gas
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Liquid 4He

Equation of state
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Jellium model
Z.. Phys. 57, 545 (1929)

Bemerkung zur Elektronentheorie des Ferromagnetismus
und der elektrischen Leitfahigkeit.
Von F. Bloeh in Zirich.
(Bingegangen am 21. Juni 1929.)

Es wird auf die Moglichkeit hingewiesen, den Ferromagnetismus auf die Leitungs-

elektronen zuriickzufithren. Fiir sein Bintreten ist dann u. a. deren Nullpunkts-

energie wesentlich. Bei dieser Gelegenheit wird eine elementare Ableitung der

Formeln fiir Energieschwerpunkt und Multiplizitit der verschiedenen Termsysteme
bei beliebiger Ausgangsbesetzung der Zellen angegeben.

Hartree-Fock thCOl‘jf Paramagnetic ground state n, = n, = n/2

direct (Hartree) term canceled by background,
exchange (Fock) term contributes

Epara 3 3 kF€2

"=
Ferromagnetic ground state n, = n N 5 4

2
Eferro _ 322/36 B 221/3 kFe
N 5 Py n If kpay < 0.35 then

Eferm < Epam (rs > 55)




Z. Phys. 52, 555 (1928)

Uber die Quantenmechanik der Elektronen
in Kristallgittern.

Von Felix Bloch in Leipzig.

Mit 2 Abbildungen. (Eingegangen am 10. August 1928,)

Die Bewegung eines Elektrons im Gitter wird untersucht, indem wir uns dieses
durch ein zuniichst streng dreifach periodisches Kraftfeld schematisieren. Unter
Hinzunahme der Fermischen Statistik aul die Elektronen gestattet unser Modell
Aussagen fiber den von ihnen herrithrenden Anteil der speszifischen Wirme des
Kristalls. Ferner wird gezeigt, daf die Berficksichtigung der thermischen Gitter-
schwingungen GroBenordnung und Temperaturabhidngigkeit der elektrischen Leit-
tahigkeit von Metallen in qualitativer Ubereinstimmung mit der Erfahrung ergibt.

Einleitung. Die Elektronentheorie der Metalle hat seit einiger
Zeit Fortschritte zu verzeichnen, die in der Anwendung quantentheo-
retischer Prinzipien auf das Elektronengas begriindet sind. Zuniichst hat
Pauli® unter der Annahme, dafl die Metallelektronen sich véllig frei im
Gitter bewegen konnen und der Fermischen ** Statistik gehorchen, den
temperaturunabhéingigen Paramagnetismus der Alkalien zu erkléren ver-
mocht. Die elektrischen und thermischen Eigenschaften des Elektronen-
gases sind dann von Sommerfeld, Houston und Eckart®* niher
untersucht worden. Die Tatsache freier Leitungselektronen wird von
thnen als gegeben betrachtet und ihre Wechselwirkung mit dem Gitter
nur durch eine zuniéchst phinomenologisch eingefithrte, dann von
Houston®*** strenger begriindete freie Weglinge mitberiicksichtigt.
SchlieBlich hat Heisenberg | gezeigt, dafl im anderen Grenzfall, wo zu-
nichst- die Elektronen an die Ionen im Gitter gebunden gedacht und erst
in nichster Niaherung die Austauschvorginge unter ihnen beriicksichtigt
werden, das fiir den Ferromagnetismus entscheidende intermolekulare Feld
seine Erklirung findet.



Z. Phys. 36, 902 (1926)

Zur Quantelung des idealen einatomigen Gases!?).
Von E. Fermi in Florenz.

(Eingegangen am 24. Miirz 1926.)

Wenn der Nernstsche Wirmesatz auch fir das ideale Gas seine Giltigkeit be-
halten soll, muf man annehmen, daB die Gesetze idealer Gase bei niedrigen
Temperaturen von den klassischen abweichen. Die Ursache dieser Entartung ist
in einer Quantelung der Molekularbewegungen zu suchen, Bei allen Theorien der
Entartung werden immer mehr oder weniger willkiirliche Annahmen iiber das
statistische Verhalten der Molekiile, oder iiber ihre Quantelung gemacht. In der
vorliegenden Arbeit wird nur die von Pauli zuerst ausgesprochene und auf zahl-
reiche spektroskopische Tatsachen begriindete Annahme benutzt, daf in einem
System nie zwei gleichwertige Elemente vorkommen kénnen, deren Quantenzahlen
vollstindig {ibereinstimmen. Mit dieser Hypothese werden die Zustandsgleichung
und die innere Energie des jdealen Gases abgeleitet; der Entropiewert fiir grolie
Temperaturen stimmt mit dem Stern-Tetrodeschen iiberein,

In der klassischen Thermodynamik wird die Molekularwirme (bei

konstantem Volumen)

= %k T (1)
gesetzt. Will man aber den Nernstschen Wiirmesatz auch auf das
ideale Gas anwenden konnen, so muf man (1) blof als eine Néherung
fiir groBe Temperaturen ansehen, da ¢ im Limes fiir 7 = 0 verschwinden
muB. Man ist deshalb gendtigt, anzunehmen, daf die Bewegung der
Molekiile idealer Gase gequantelt sei; diese Quantelung Zufert sich bei
niedrigen Temperaturen durch gewisse Entartungserscheinungen, so dafl
sowohl die spezifische Wirme als auch die Zustandsgleichung von ihren
klassischen Ausdriicken abweichen werden.

Zweck der vorliegenden Arbeit ist, eine Methode fiir die Quantelung
des idealen Gases darzustellen, welche nach unserem Erachten mdglichst
unabhiingig von willkiirlichen Annahmen iiber das statistische Verhalten
der Gasmolekiile ist.

In neuerer Zeit wurden zahlreiche Versuche gemacht, die Zustands-
gleichung idealer Gase festzustellen?). Die Zustandsgleichungen der
verschiedenen Verfasser und unsere unterscheiden sich voneinander und

1) Vgl. die vorlidufige Mitteilung, Lincei Rend, (6) 3, 145, 1926,

?) Vgl. z. B. A. Einstein, Berl. Ber. 1924, 8. 261; 1925, 8.318; M. Planck,
ebenda 1925, S.49. TUnsere Methode ist der Einsteinschen insofern verwandt,
als die Annahme der statistischen Unabhiingigkeit der Molekiile bei beiden
Methoden verlassen wird, obgleich die Art der Abhingigkeit bei uns ganz anders
ist wie bei Einstein, und das Endergebnis fiir die Abweichungen von der klassischen
Zustandsgleichung sogar entgegengesetzt gefunden wird.
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Z.. Phys. 57, 545 (1929)
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Phase diagram of electron gas

Ceperley and Alder,
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FIG. 2. The energy of the four phases studied relative to that of the lowest boson state times 7, * in rydbergs vs
7g in Bohr radii. Below 7, = 160 the Bose fluid is the most stable phase, while above, the Wigner crystal is most
stable. The energies of the polarized and unpolarized Fermi fluid are seen to intersect at vy = 75. The polarized
(ferromagnetic) Fermi fluid is stable between v; = 75 and »; = 100, the Fermi Wigner crystal above r; = 100, and
the normal paramagnetic Fermi fluid below »; = 75.

Ortiz, Harris and Ballone,
Phys. Rev. Lett. 1999

Zong, Liu and Ceperley,
Phys. Rev. E 2002

Partially polarized: 20 < r, <40 Partially polarized: 60 < r; < 100
Fully polarized: 40 < r, < 100 Fully polarized: never

Wigner crystal:
Fully polarized: 75 < r, < 100

r, > 100

Holzmann and Moroni,
Phys. Rev. Lett. 2020

Azadi and Drummond,
Phys. Rev. B 2024

Ground state always
paramagnetic




Similar results for 2DEG, 3He and 2D dipolar Fermi gas
- No itinerant ferromagnetism

Ultracold atoms? Stoner model
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BCS-BEC crossover of an attractive Fermi gas

Astrakharchik et al. PRL (2004)

see also next talk by Strinati
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Experiments:
Paris: Nascimbene et al. Nature (2010)

E=0.415(10)
MIT: Ku et al. Science (2012)
E=0.376(5)

Carlson et al. (2003)

& =0.44(1) - FN-DMC
Astrakharchik et al. (2004)
& =0.42(1) - FN-DMC
Gandolfi et al. (2011)

& =0.3923(4) - FN-DMC
Carlson et al. (2011)
E=0.372(5) - AFQMC




Experiments testing the EoS

Astrakharchik et al. PRL (2004)
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Take-home message on QOMC methods

e Bosons: QMC methods are exact (both at 7=0 and finite
7). Only limited by size of system (/V ranges from few
hundreds to few thousands)

e Fermions: QMC methods are not exact (at 7=0 upper
bound on GS energy). Accuracy can not be established a
priori.



Projection Monte Carlo (Diffusion MC)

Schroedinger equation in imaginary time 7 = it/7

—0, |y (7)) = (H—E,») lw(7)) and

w(t)) = e~ TU—Lyy) | !EEﬂOH

if at the initial time |y (0)) is not orthogonal to the ground state |y,)

W (0) = ) a,lw,)

for larger times n

700

w(@) = ), e EED |y) — age™ G ED)| wo)l

The ground state component decays with the slowest rate. If the reference energy is
chosen such that £ . = E, at large times the wavefunction is proportional to the exact

ground state

|y (z = 00)) = ay|y)



Algorithm

* Algorithm is iterative: state in coordinate representation y(R,7) = (R|y(7))
VR 1+ 50) = [dR(R |0 [ RYp(R.

(approximation for propagator exact if
07 — 0, but large fluctuations in the potential energy V(R))

e Importance sampling via a guiding function f(R,7) =y, (R)yw (R, 7)

R
f(R, T+ 51.) — | dR’ <R | e_5T(H_Eref) | R’> WT( ) f(R/, T)
wr(R)’
(R) + B[ (R)
G(R, R, 57) = (R| e~ | R')e 071 Exy)
Langevin operator (diffusion+drift) and local energy

Fluctuations in £, (R) much reduced compared to V(R)!
. Walkers distributed according to f(R, 7)
Ny(7) = JdR J(R,7)

o ELRFELR)
evolve from R’ — R according to diffusion, drift and branching ¢ ’ < ’ E"’f>

Normalization changes!




A. Diffusion: walkers explore configuration space

R1

B. Drift: walkers pushed where y; is largest

C. Branching: i-th iteration walker R is replicated r; times Re| e

n; = ixlt[cxp{—JT(El’(Ri) ; El’(R:) - Er) }+ C]

Systematic errors:

a) time step 67 small enough S

b) number of walkers /Vy, large enough

Old Configurations

New Configurations

ni=0.8

“killed"

n2=1.6

n3=0.3
1

“killed”

After long projection time

For large times, the pdf f(R) is proportional to the ground state:

— Jim (R, 7) = lim fo(R) = dr(R)6o(R).

Ny

Exact ground state energy

*

i=1

1
Ny 2 B

(R) =

The Monte-Carlo estimate of the expectation value of the energy is given by

JdR f(R,7 — 00)

J dR $r(R)go(R) g tmy HUr (R)

[dR f(R, T — o0)

0




Walkers distributed according to pdf f(R, 7)

f(R,7) >0 density of walkers at time 7

GS of bosons ‘Pg(R) >0

J(R, 7 = o0) = yp(R)Yo(R) 2 0 GS of fermions W{(R) Z 0

For fermions y(R) must be antisymmetric such that

JR,7 = 00) = yr(R)¥pn(R) = [y (R) | [V pn(R) |

Same nodal surface: fixed-node approximation £, > Eg
(if nodes are exact then W (R) = ‘Pg (r) and Epy = Eg )

When walkers allowed to cross nodes
\/ ~2 F B
(0} N 1 eNT Ey NEO
|EST /Ny

fermion sign problem




Possible solution: improve wf using neural-network methods

communications physics Article Superconductivity in the two-dimensional Hubbard model
a revealed by neural quantum states

Christopher Roth,! Ao Chen,'?3 Anirvan Sengupta,’>*® and Antoine Georges®> %78

ps://doi.org/10. 024-01613-w LCenter for Computational Quantum Physics, Flatiron Institute, New York 10010, USA
2 Division of Chemistry and Chemical Engineering,

Neural-netWOrk quantum States fOr Califomz’aa Institute of Technology, Pasadena, California 91125, USA
= Center for Electronic Correlations and Magnetism,
UItra-COId Ferml gases University of Augsburg, 86135 Augsburg, Germany

4 Center for Computational Mathematics, Flatiron Institute,
162 5th Avenue, New York, New York 10010, USA
5 Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
S Coliége de France, 11 place Marcelin Berthelot, 75005 Paris, France
"CPHT, CNRS, Ecole Polytechnique, IP Paris, F-91128 Palaiseau, France
8DQMP, Université de Genéve, 24 quai Ernest Ansermet, CH-1211 Genéve, Suisse
(Dated: November 12, 2025)

™ Check for updates

Jane Kim @ '*, Gabriel Pescia ® >, Bryce Fore ®*, Jannes Nys ®2°, Giuseppe Carleo ©2?,
Stefano Gandolfi ®°, Morten Hjorth-Jensen'® & Alessandro Lovato ®*"#

Papers containing neural-network and
quantum Monte-Carlo in abstract
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Fixed-node approximation and choice of trial wf as a resource

Trial state determines phase

Normal state of fermions

v, = Hfu(rii')DT(N¢)D¢(N¢)

ik, iK,T, ik, Ty
f1,(r) = 0 nodes fixed by Slater determinant e e""..¢e
of plane waves D, and D, as in free Fermi gas D.(N,)=le

— incompatible with ODLRO

ikzr ikgr, ikﬂ-rN
Flle™ 2 e i

Superfluid state of fermions

¢(l‘1 I )¢(l’21’ )'“¢(rNT 1') ¢(r) > 0 paired orbital

Y = d(r. - )No(r-)...o(r.. - (e.g. solution of 2-body problem)
scs = | BI)PE ) f(ry )| |02 solution of 2 body pr




EOS Of normal Fermi gas PRL 106, 215303 (2011) PHYSICAL REVIEW LETTERS yeck ending

Fermi-Liquid Behavior of the Normal Phase of a Strongly Interacting Gas of Cold Atoms

S. Nascimbéne,"* N. Navon,' S. Pilati,” F. Chevy,1 S. Giorgini,3 A. Georges,“’5 and C. Salomon'
! Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris, France
2Theoretische Physik, ETH Zurich, CH-8093 Zurich, Switzerland
3Dipartimento di Fisica, Universita di Trento and INO-CNR BEC Center, I-38050 Povo, Trento, Italy
4Centre de Physique Théorique, CNRS, Ecole Polytechnique, route de Saclay, 91128 Palaiseau Cedex, France
5C0[lége de France, 11 place Marcellin Berthelot, 75005 Paris, France
(Received 26 January 2011; revised manuscript received 6 April 2011; published 27 May 2011)

Equation of state - attractive branch

L ] ¢ ¢
o
1=
o"
0.56 e
T ®  Superfluid
0.5 $ ®  Normal
*J<—0.42
=)
o
o
o




EoS as a function of polarization

Ny =N,
1.2} ' ' ' ' P=—""7
Ny + N,
1t
. Fermi liquid EoS
2 os - Ep) 3 s
L P _
s m 1/kga = -1.5 ——— = —€f §N+—)( 1p2+
™ 0.6 mika=-1 | N 5 9
L u 1/kga = -0.6
m 1/kga =-0.2
0.4 n 1/kza =0
m 1/kga = 0.2
0.2} :;tz: Tos ] susceptibility
0 0.1 0.2 0.3 0.4 0.5 '

2" order

i o //\_

Fermi liquid theory works up to 1/kza ~ 0.5 0s

For larger values E(p) < p §o_4
e drop of magnetic susceptibility

e presence of gap? "
 limit for pseudogap phase above 7.? 0



Experiments at ENS
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Bipolaron formation in a 1D Fermi gas

e Bath:1D Fermi gas (Tonks-Girardeau limit)
* Two impurities: same mass and tunable interaction with bath

from Will et al. 2021

a) n

If impurities are heavy: M > m

* Exact Born-Oppenheimer potential between
static impurities mediated by bath
(Casimir force between impurities)

« Effective Schroedinger equation and look for
bound states

« Symmetric bound state always present, anti
symmetric bound state only if M large enough




Preliminary results] Exact calculation using DMC

Bipolaron energy: E, = E(N + 2) — E(N) — 2E,

=129

o=
|
E,, [EW/ m]
N
\
J

E,, [EQTP/ m|
Ak

0\
—
° \O\g\o o
: e T—— o
- 9 o

i\\ P

1} Q“IQE._J P ] T]—Ll
-2 B —— 'n:2
o
0 1 1 1 1 1 1
0.1 1 10 100 0.1 1 10 100
M/m M/m

o at large mass ratio M/m one recovers BO results
e calculation for fermionic impurities is also exact (no sign problem in 1D)
 effective mass of bipolaron and transport properties



Conclusions

Overview of FN-DMC methods to interacting fermions
e Itinerant ferromagnetism
 EoS of superfluid fermions
e Strongly interacting Fermi liquid
e Bipolaron formation in a Fermi gas

Sign problem can be systematically attenuated
using neural-network quantum states

Choice of many-body nodal surface can be used to
discriminate quantum phases
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