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... “we observe superfluid flow in an expanded Fermi gas down to densities of about 10'" cm-3.
At these densities, the average distance between two atoms is 2 um!

The average distance between neutrons in a neutron star is a few fm (10° um), corresponding
to densities of 1038 cm-.

This nicely illustrates how general the phenomenon of
(fermionic) superfluidity is.” M. Zwierlein (MIT)
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| Debbie Jin (1968*2016)

“Good morning. I am delighted to be here today to tell you about some exciting new results
from our lab [... ] What we report is the first observation of a fermionic condensate
i an ultracold gas of atoms. This is a new form of matter Zhat is related to a Bose-

Einstein condensate and related to superconductivity. But our fermionic condensate is not
a Bose-Einstein condensate and not a superconductor but really something
new that may link these two behaviors [...]. This work gives the scientific community a
new tool for understanding the basic physics behind superconductivity.

January 27, 2004



BEC-BCS crossover (Martin’s talk)
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“‘weak” attractive interactions s “strong” attractive interactions
Large pair size: Small pair size:
pairing in k-space pairing in r-space

S. Giorgini, L. P. Pitaevskii, and S. Stringari Rev. Mod. Phys. 80 (2008); Ultracold Fermi Gases,
Proceedings of the International School of Physics "Enrico Fermi”, Course CLXIV, Varenna 2006, edited
by M. Inguscio, W. Ketterle, and C. Salomon (IOS Press, Amsterdam, 2008), M. W. Zwierlein, Superfluidity
in ultracold atomic Fermi gases in Novel Superfluids Vol.2 (Oxford Academic, 2014)



Order parameter

W=|WYo|e'®

/N

|Wo|*=condensate/superfluid density VO~superfluid velocity

The order parameter discloses the intimate & microscopic
properties of the condensate/superfluid state.

Quantum statistics “shape” the excitation spectrum that
determines the macroscopic quantum behavior of superfluids,
limiting its robustness against dissipation.
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Strongly-interacting Fermi superfluids: interactions Ilimit momentum
distribution analysis. Condensate fraction: sweeping into the weakly interacting
BEC regime: “indirect” measurement of the order parameter amplitude .

BEC-side Resonance BCS-Side
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Ultracold Fermi Gases, Proceedings of the International School of Physics "Enrico Fermi", Course CLXIV,
Varenna 2006, edited by M. Inguscio, W. Ketterle, and C. Salomon (I0S Press, Amsterdam, 2008)

Alternative approach?



Quantum transport

Transport measurements: fundamental tool to investigate matter.
Extracting microscopic properties of a quantum many-body systems via

measuring bulk parameters (1,V...) (Prof. Von Kilitzing’s talk)

Datta, Electronic transport in mesoscopic systems
(Cambridge University Press, 1997)

Localization
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Quantum Transport with Fermi Gases

Transport through narrow Spin, sound, heat transport  Tunneling through structures
ballistic channels
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ETH, Geneva MIT, Harvard, Innsbruck, Toronto, ETH, LENS, Princeton, Toronto,
ETH, LENS, MPQ, Yale, Rice... MPQ, MIT, ...

For a review: Krinner et al., J Phys.: Condens. Matter 29 (201/)



Let’s go to LENS
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LiLab friends & collaborators:

Stringari, Scazza, Kwon, Recati, Marino, Xhani, Smerzi, Pezze’, Donelli, Fort, M. Modugno,
Galantucci, Singh, Amico, Barresi, Magierski, Wlazlowski, Strinati, Pieri, Pini, Minguzzi, Polo...



Summary

= The Josephson Effect in Quantum Liquids and ot
. Ultracold Fermi Gases * * . . *.*
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The JOSEPhSGI'I effect (P. W. Anderson’s point of view)

-+ In the case of superconductivity things are quite different. The internal long—
range order parameter — the phase — is not a parameter for which suitable
instruments exist; we do not normally walk around with objects which have phase
order. A superconductor has rather perfect internal phase order, but as we have
shown the zero—point motion of the total order parameter of an isolated
superconductor is large and rather rapid.

The importance of the Josephson effect, then, is that it provides for the first
time an instrument which can act like a clamp for a solid or a coercive
field for a ferromagnet: it can pin down the order parameter -

But most important of all, it frees us conceptually from the mystery surrounding

superconductivity, and places it in line with all of the other condensation
phenomena.

P. W. Anderson in Lectures on the Many—body Problems, E.R. Caianiello, Elsevier Science (1964)
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Barone and Paterno, Physics and Applications of the Josephson Effect, (Wiley, New York, 1982)
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Josephson, Phys. Lett. (1962) DC Josephson effect
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Electrons & neutral atoms
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Josephson-Anderson equations:

I = I.sin(¢®) [ = Lsin(e)
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Josephson effect in atomic BEC

{

40- o ~
— 2. _E;'_; j Oms £
g.. 0. i S5ms =
5.0 5. ¢
2 0. - 10ms 2
1 o 20ms
60 ~
0 40 8 120 160 200 3 j 2oms N
Time [ms] ; _— —] 30ms
i = 35ms
Jose|_ohson_ juncti_on arrays: & _:_"-"‘; o |
BEC in optical lattices _[_:‘:j oms 3
. S0ms

BEC in a double well Supersolid state

_ Biagioni et al., Nature (2024
Cataliotti et al., Science (2001) Albiez et al., PRL (2005) PO"get al., Nat. Phys. (2(()25) )

Levy et al., Nature (2007)
Ryu et al., PRL (2013)
Spagnolli et al., PRL (2017)



Ultra-low energy fermions but very Strongly-interacting
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Holland, Kokkelmans, Chiofalo, and Walser PRL (2001)
Randeria, Nat. Phys. (2010)



Ingredients: atomic Fermi gases

Quasi-homogeneous 3D superfluids: Nt+=N;=50000 @ T/Tr~.1 -> T<Tc

y (um)

0O 3 6
Nap (MM™2)

N2p (UM™2)




IngrEdients: shaping dynamical optical potentials

¥ [um]

t=140ms t=18.0ms t=220ms
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~ 100 atoms per lattice site. Tunable
mesoscopic Josephson junction arrays




Kwon et al. Science (2020) DC JOsephSOn effect

Injecting a current: moving the optical barrier at controllable velocity

Atomic cloud: ;t;nznelin% t;]irrier:
Ng . = 3.5 X 10* atom pairs " "*T)n‘]JSIg(lO)um
T/Tr =~ 0.06 (2) V=,

Giovanazzi, Smerzi, and Fantoni PRL (2000)



Kwon et al. Science (2020)

Pictures
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Below a critical current, the gas flows

NA ~ 0.5

W yl—"‘ entirely through the tunnelling barrier —

Superfluid coherent transport!

0x = 10um
v =0.1lmm/s Sound velocity (bulk):
o = 1.5um c=10 mm/s

Vo/gp ~ ().8



RCSJ circuit model

0.08 0.02 : : .
M. Tinkham, Introduction to Superconductivi
0.04
IN >
v 0 0 &
N m lc and G free parameters
0.04
0.08 -0.02

N
o

R ol ) ‘...,...-'r-:-s"' |
el
c 0
@
5
| O ol )
1=1:Sinp-GAp
2000 50 0 50 100

Voltage (pV)



Kwon et al. Science (2020)
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DC Josephson effect

Luick et al., Science (2020)



Extracting condensate fraction for BEC-BCS gases

Ambegaokar-Baratoff relation (BCS)
nle = Ey~A~nNc

Extension to BEC-BCS crossover

Ale~ U Nc |T|(M)

Zaccanti and Zwerger PRA (2019)
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04 Unitary Fermi superfluids:
condensate fraction is ~ 50%even

Haussmann et al., PRA (2007).

Astrakharchik et al., PRL (2005).

Gorkov, T. Melik-Barkhudarov, Sov. Phys. JETP (1961).
Giorgini, L. P. Pitaevskii, S. Stringari, RMP (2008).

4

¢ average of all data with v,/u > 0s
¢ vo/Er =~ 1.06 data set only
homogeneous Luttinger-Ward [1]
— . — Quantum Monte Carlo simulations [2]
______ BCS approximation [3]
_ _ Bogoliubov approximation [4]



Del Pace et al., PRL (2021)

Josephson effect across T¢
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Del Pace et al., PRL (2021) Josephson effect across T¢

Weakly interacting BEC: phonons
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Del Pace et al., PRL (2021) Josephson effect across T¢
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Patel et al., Science (2020)



Del Pace et al., Science (2025) AC-drive: Shapiro St&ps

v(t) = vpe + vyccos(wt) = I(t) = Ipc + I[4ccos(wt)

Singh et al, PRL (2024)
Bernhart et al., Science (2025)

100-
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0 f (GHz)
Caruso, IEEE Transactions on Applied 0 S0 100

Superconductivity (2018) V (IJV)



Del Pace et al., Science (2025) AC-drive: ShapirO ste PS

¢ is synchronised with the external drive. When current overcomes the
threshold for phase slippage, we observe vortex-anti vortex pairs.
Synchronization in strongly-interacting quantum liquids



Latest news from LiLab: sound engineering

“Sagnac” phonon-interferometer with annular 4
Fermi superfluids (proposed by S. Stringari): _ 3. 3D I ~2D
Quantum of circulation: angular momentum E..
per particle of BEC-BCS superfluids -atomic = 2+ I
Cooper pairs are “really” made by two atoms- & X I I
. = 1 W F ¥
Frometa et al., arXiv:2511.02664v2 (2025)
0 | | | 1

1/kra
MIT, USTC, Yale, Hamburg, Cambridge, ENS...

Cooperative stabilization of persistent
currents in  superfluid ring networks:
Josephson junction necklace as closed chains
of locally coupled Kuramoto-like oscillators:
synchronization phenomena in many-body
systems.

Ciszak et al.,arXiv:2601.15121v2 (2026)




The Italian 3D Fermi box (wncrossed DMDs). Thierry: we have listened to you

NT=Nl240000

1D | ]
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il ? | Fostering further collaborations and

- 10

i | . comparison with other Fermi-box friends
| | .. in the world (MIT, Yale, USTC,
. Hamburg...) Mukherjee et al., PRL (2017)

- —10

D Benchmarking theories for defining new
m and effective theoretical approaches

Large-reservoirs Josephson dynamics:

y [um]

Josephson dynamics in fully homogeneous
superfluids (tunneling regime V,/u up to 7).

Transition from phonon-dominated to ¢
Josephson-dominated regimes:  Caldeira- ) #
Leggett model ? - _%@j
Del Pace et al., in preparation i

Caldeira and Leggett, Annal. Phys. (1983)
Polo et al., PRL (2018)



Multiplexing for parallel analog quantum simulation

(Rajkov et al., in preparation)

We realize several identical and independent
g-simulation units with locally tunable
parameters.

 Parallel execution of the same Hamiltonian
with different parameters

* Reconfigurability of the simulating units for
accessing phase diagrams and non-
equilibrium dynamics on single experimental
runs

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[ s A - - :.—

X [um]

Parallel experiments for exploring ground-state phases, driven dynamics and
quantum transport phenomena in the presence of strong interactions and

disorder...

Having reproducible, high-volume data from parallel runs could make training and
validation of Al and ML-based analysis methods more robust.



First example:

Multiplexed homogeneous Josephson junctions with local phase control
(independently phase-imprinting each simulation unit) (Rajkov et al., in preparation)
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