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Nd-Fe-B magnets,YBaCuO superconductor

Julian Hetel and Nandini Trivedi, Ohio State University



HI1S Magnets: Enabling Technology

I'he surest path to limitless,

clean, fusion energy

YBCO magnets allow for smaller,
faster, and less expensive
tokamaks for plasma fusion
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Insulating antiferromagnet with one electron per site
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PW.Anderson (1987): The key to high temperature superconductivity
is the formation of a “resonating valence bond state”.
A quantum spin liquid with many-boson (spins on Cu) entanglement

D — dimer covering

of lattice
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by local operators: they are classified under distinct superselection/anyon sectors.




JPEEES s 11.6802 A

3.8872 A - = o, ) _

a 3.8227 A

1

YBasCuszOg O = (-1

Key feature: fractionalization. Excitations are particle-like, but cannot be created
by local operators: they are classified under distinct superselection/anyon sectors.




JPEEES s 11.6802 A

3.8872 A - = o, ) _

a 3.8227 A

1

YBasCuszOg O = (-1

Key feature: fractionalization. Excitations are particle-like, but cannot be created
by local operators: they are classified under distinct superselection/anyon sectors.




sl Ble 1k

) S -\ SRl
- 9 9, 9, 9,
® O ~ 0) o o @
Yor RS 8 SR S SR )
o).e‘(o) H : Spin S=1/2,
Prores 11.6802 A & & & & a
ALY o GRS N8 GRS B G 0 S A) Charge
% o ¢ ¢ R neutral
' ¢ . . g u spinon
’ Y1 N e 1Y
| () ¥ 9 9, %,
2 3.8872 A .) x . (. 8
a 3.8227 A e i Y '\
1
Y BaoCuzOg, =7 (T = 141)

Key feature: fractionalization. Excitations are particle-like, but cannot be created
by local operators: they are classified under distinct superselection/anyon sectors.




11.6802 A

3.8872 A
3.8227 A

Y BaoCuzOgy

-

—~f
&
&

-

()

o
. ~ s

9

e

N

«) I

)

BE
[ (I

o p————

0 W
st
o/ o/
& g
A &

o
A
h /

-

< e >
oy g
& &
« SEENP—

- >

j X

1

V2

< et > g
¢
&
(e

>

- i
:
¢

—~

A

-«

&
£
Y.
&
&
'y
o
&
=

7
A
Spin S=1/2,
, charge
o neutral
u spinon
.
=
(T = 140)

Key feature: fractionalization. Excitations are particle-like, but cannot be created
by local operators: they are classified under distinct superselection/anyon sectors.



S IO\ S ?:
v ¥, %, %
(e ™ &)
<1k oo'* S 1
v
(& & &
. (slm e

pmmm e 11.6802 A

'A
by 8 Spin S=1/2,
Q i
() charge
Yy - 'V
- : 0 neytral
' - 9 9 spinon
C - k) .‘ ‘\ .0 A A i
T
2 3.8872 A Q 8 [
a 3.8227 A na «\.9‘.;.1» B |, S

Y BaoCuzOg, - % (L) = 141)

Key feature: fractionalization. Excitations are particle-like, but cannot be created
by local operators: they are classified under distinct superselection/anyon sectors.




Quantum entanglement of mobile fermions
1. Fractionalized Fermi liquids (FL*)

e Entanglement of a (critical or gapped) quantum spin liquid coex-
isting with electronic Landau quasiparticles. Charge is carried by

ordinary electrons, but there are also fractionalized (anyonic) spin
excltations.

e Applies to cuprate pseudogap (predictions consistent with recently
observed Yamayji effect)
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2. Sachdev-Ye-Kitaev (SYK) liquids

o Complex entanglement of a compressible state with no quasiparticles.

e Universal theory of strange metals (and generic charged black holes
in asymptotically flat 3+1 dimensional space).
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Fluctuating orders appear as
composites of a more
fundamental fractionalized order

H. Pandey, M. Christos,
PM. Bonetti, R. Shanker,
S.Sharma, S.S,,
arXiv:2507.05336

parameter, B, which carries an
emergent SU(2) gauge charge

M. Christos, Zhu-Xi Luo, L. Shackleton, Ya-Hui Zhang,
M. S. Scheurer, S.S.,PNAS 120, €2302701120 (2023);
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Luttinger, 1960: Area enclosed by the Fermi surface is the
same as that for free fermions with the same symmetry.
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Spin-1/2 holes of density
p=1+p

" Area p/2

Positive Hall coethicient
of carrier density p

Luttinger, 1960: Area enclosed by the Fermi surface is the
same as that for free fermions with the same symmetry.

Oshikawa, 2000: Area constrained by an anomaly-argument
of global U(1) and translations
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Positive Hall coefficient
of carrier density p — 1
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evidence for
spin liquid
quantum
entanglement.
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Doping an insulating antiferromagnet with holes of density p
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Doping an insulating antiferromagnet with holes of density p
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R. K. Kaul,Y. B. Kim, S. S., T. Senthil, Nature Physics 4, 28 (2008); S.S. M. A. Metlitski, Y. Qi, and C. Xu, PRB 80, 155129 (2009)
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Doping an insulating antiferromagnet with holes of density p
Oshikawa anomaly is satisfied
by sum of spin liquid (1) and
Fermi surface anomalies (p)

density p of
spin-1/2,
charge +e
‘holes’ (or

‘magnetic
polarons’)
with
coherent
inter-layer
transport.

\/ f
@ O =) -INNVZ O =(to)+lot)/va (Area p/8]

T. Senthil, S. S., M.Vojta, PRL 90, 216403 (2003); R. K. Kaul, A. Kolezhuk, M. Levin, S.S., T. Senthil, PRB 75, 235122 (2007)
M. Punk, A. Allais, and S. Sachdev, PNAS 112,9552 (2015)
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Doping an insulating antiferromagnet with holes of density p
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PHYSICAL REVIEW B 75, 235122 (2007)

Hole dynamics in an antiferromagnet across a deconfined quantum critical point

Ribhu K. Kaul,! Alexei Kolezhuk,*? Michael Levin,! Subir Sachdev,* and T. Senthil34
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Neel VBS

The dashed line in the Néel

phase indicates the boundary of the magnetic Brillouin zone. Only
the Fermi surfaces within this zone contribute to the Luttinger
counting, and so the area of each ellipse is A-=(27)?5/4. In the

VBS phase, all four pockets are mequwalent and so the area of
each dlipse is Ac=(2m)%6/8.

Factor of 2 between
SDWV fluctuation

and FL*




Observation of the

Yamaji effect in the
cuprate pseudogap

See also:
Fermi surface transformation at the pseudogap critical point of a cuprate superconductor

Yawen Fang, Gaél Grissonnanche, Anaélle Legros, Simon Verret, Francis Laliberté, Clément Collignon, Amirreza Atagl,
Maxime Dion, Jianshi Zhou, David Graf, M. J. Lawler, Paul Goddard, Louis Taillefer, and B. J. Ramshaw, Nature Physics 18, 558 (2022)

Angle-dependent magnetoresistance (ADMR) of Laq ¢ Ndg 4Sr;CuOy
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O . .
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Hole doping p

At the Yamaji angle, the orbits in the plane
orthogonal to B have an area which 1is
independent of momentum in the ¢ direction, to

first order in the hopping along the ¢ direction.
K.Yamaji |PS] 58, 1520 (1989)
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The observation of the Yamaji peakis evidence for small Fermi-surface

pockets in the normalstate of the pseudogap phase.
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The observation of the Yamaji peakis evidence for small Fermi-surface
pockets in the normalstate of the pseudogap phase.

Excellent evidence for hole pockets with
coherent interlayer-transport.
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0 ' ' ' coherent interlayer-transport.
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0 ' ' ' coherent interlayer-transport.
0 ©) Rules out holon metal

\_ and possibly SDW metal .
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The observation of the Yamaji peakis evidence for small Fermi-surface
pockets in the normal state of the pseudogap phase. The small size of the
pockets, each estimated to occupy only 1.3% of the Brillouin zone area, is not
oL l l | expected giventhe absence of long-range broken translational symmetry.
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The observation of the Yamaji peakis evidence for small Fermi-surface
pockets in the normal state of the pseudogap phase. The small size of the

pockets,jeach estimated to occupy only 1.3% of the Brillouin zone area is not

oL l l | expected given the absence of long-range broken translational symmetry.
’ 30 o0 20 Predicted FL* pocket fraction = p/8 = 1.25% !

o) Fluctuating AF metal fraction = p/4 = 2.5%.

(p/8 also in Yang-Rice-Zjang ansatz, Peter Johnson photoemission,

and Jenny Hoffman and Seamus Davis STMs; Stanescu-Kotliar) Jing-Yu Zhao, S. Chatterijee, S. S., Ya-Hui Zhang, arXiv:2510.13943
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The observation of the Yamaji peakis evidence for small Fermi-surface
pockets in the normal state of the pseudogap phase. The small size of the

pockets,jeach estimated to occupy only 1.3% of the Brillouin zone area is not

oL l l | expected given the absence of long-range broken translational symmetry.
’ 30 o0 20 Predicted FL* pocket fraction = p/8 = 1.25% !
') _Fluctuating AF metal fraction = p/4 = 2.5%.

(p/8 also in Yang-Rice-Zhang ansatz, Peter Johnson photoemission,

and Jenny Hoffman and Seamus Davis STMs; Stanescu-Kotliar) Jing-Yu Zhao, S. Chatterijee, S. S., Ya-Hui Zhang, arXiv:2510.13943
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The observation of the Yamaji peakis evidence for small Fermi-surface
pockets in the normal state of the pseudogap phase. The small size of the

pockets,jeach estimated to occupy only 1.3% of the Brillouin zone area is not

oL l l | expected given the absence of long-range broken translational symmetry.
’ 30 o0 20 Predicted FL* pocket fraction = p/8 = 1.25% !

o) Fluctuating AF metal fraction = p/4 = 2.5%.

(p/8 also in Yang-Rice-Zjang ansatz, Peter Johnson photoemission,

and Jenny Hoffman and Seamus Davis STMs; Stanescu-Kotliar) Jing-Yu Zhao, S. Chatterijee, S. S.,Ya-Hui Zhang, arXiv:2510.13943




Wavefunction for FL*
and
observations on
ultracold atoms
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Ancilla Layer Model
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Ancilla wavefunction for FL* of Hubbard model
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Sachdev-Ye-Kitaev
liquids



The Sachdev-Ye-Kitaev (SYK) model

Sachdey, Ye (1993); Kitaev (2015)
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The Sachdev-Ye-Kitaev (SYK) model

Sachdey, Ye (1993); Kitaev (2015)
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The Sachdev-Ye-Kitaev (SYK) models

Sachdey, Ye (1993); Kitaev (2015)

Solvable models of multi-particle
quantum entanglement with
mobile fermions.

Yields a metal whose excitations
are not particle-like
i.e. no bosons, fermions, anyons....

Current is carried by an
“entangled quantum soup”




Yukawa-Sachdev-Ye-Kitaev model
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i / il

with g¢;;, Independent random numbers with zero mean.

W. Fu, D. Gaiotto, J. Maldacena, and S. Sachdev, PRD 95, 026009 (2017)

J. Murugan, D. Stanford, and E. Witten, JHEP 08, 146 (2017)

A. A. Patel and S. Sachdev, PRB 98, 125134 (2018)

E. Marcus and S. Vandoren, JHEP 01, 166 (2018)

Yuxuan Wang, PRL 124, 017002 (2020)
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Yuxuan Wang and A. V. Chubukov, PRR 2, 033084 (2020)
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Yukawa-Sachdev-Ye-Kitaev model

1 1
H = —,uz cl.tci Z 5 (W? w(Z)CI)?) ~ Zgijgc;rch)g
i / il

with g¢;;¢ Independent random numbers with zero mean. The large N equations for the Green’s
functions and self energies of the fermions (G, ) and bosons (D, II) are

Make the low frequency ansatz
G(iw) ~ —isgn(w)lw| 722 D(iw) ~ |wl*

A consistent solution exists for

|. Esterlis and J. Schmalian,

AN — 1 PRB 100, [ 15132 (2019
=1 , A =0.42037. .. See aIsoYuxuan(Wang;

2(2A — 1)[sec(2mA) — 1) PRL 124, 017002 (2020)




Yukawa-Sachdev-Ye-Kitaev model

1 1
H = —,uz cl.tci Z 5 (W? w(Z)CI)?) ~ Zgijgc;rch)g
i / il

with g¢;;¢ Independent random numbers with zero mean. The large N equations for the Green’s
functions and self energies of the fermions (G, ) and bosons (D, II) are

At T > 0, solutions are fully characterized by a
universal frequency-dependent relaxation time,

h ho
— kgl d-
r(w) 7 (kBT>

where ®@.. is a known universal function.




From FL* to FL
via

the strange metal
using the 2D-YSYK model
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Described by the
condensation of a
Higgs field ®.




Quantum
phase transition

\ / between two metals
e o (FL* and FL)
\ Strange / at p = p., with
\\ Metal ,, no symmetry breaking.
FL* \ ¢ Large
‘\ ,' Fermi Described by the
\ ;, Surface condensation of a

\ ! o Higgs field ®.
\ /|
\ ! :\K Strange metal is obtained from
S | the T' > 0 quantum criticality of
\ ! the FL-FL* transition, provided

there 1s momentum relaxation.

Ya-Hui Zhang and S. S., PRR 2,023172 (2020)



Quantum
phase transition
\ / between two metals
\ 4 (FL* and FL)
\ Strange / at p = p¢, with

k Metal ,, no symmetry breaking.

£ * \ ¢+ Large
\ ,I Fermi Described by the

\ ;, Surface condensation of a
(00) Higgs field ®.

"‘\/ Strange metal is obtained from

S | the T' > 0 quantum criticality of
\ ! the FL-FL* transition, provided
there is momentum relaxation.
_ OJ At low T’ this requires
spatial disorder.
p Most relevant is Harris disorder:
spatial variation in the value of p..

4L

Ya-Hui Zhang and S. S., PRR 2,023172 (2020)



2D-YSYK model: Fermi surface + Higgs boson with interaction disorder

£=cho (409 ) i (2 +209) Fi

+ [VO(r)]* + s [®(r)]* + u [®(r)]*
+ g+ g (r)] cl(r) fia(r) ®(r) + H.c.
+o(r)cl (r)ca(r)

®“ “mass” disorder s — s+ ds(r) is strongly relevant;
rescale @ to move disorder to the Yukawa coupling.

Spatially random Yukawa coupling ¢’(r) with ¢/(7) =0, ¢’(7)g' (") = ¢"*6(r — ')

Spatially random potential v(r) with v(r) = 0, v(r)v(r’) = v*6(r — r’)



Keimer, Kivelson, Norman, Uchida, and Zaanen, Nature 518, 179 (2015) Non-Boltzmann
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From FL* and FL
to the
d-wave superconductor
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The underlying FL*-FL
transition in the normal state,
is visible in the distinct
vortex core structures of the
superconducting state
at small p and large p

At large p, STM shows the
Wang-MacDonald peak

of BCS theory.
T. Gazdi¢, I. Maggio-Aprile, G. Gu
and C. Renner, PRX 11, 031040 (2021)
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o Fractionalized Fermi liquids (FL*)

— Observation of the Yamaji effect in the
cuprate pseudogap

— Wavefunction for FL™* and ultracold atom observations

o Sachdev-Ye-Kitaev (SYK) liquids
— The Yukawa-SYK model

— From FL* to FL via the strange metal
using the 2D-YSYK model

o From FL and FL* to the d-wave superconductor



| 3 Pietro Bonetti Aavishkar Patel
Maine Christos Stuttgart Nikolaenko ICTS, Bengaluru

Caltech

The Institute of
Mathematical
Sciences,
Chennai

Harshit Pandey Ravi Shanker Sayantan Sharma

e Lectures on insulating and conducting quantum spin liquids, S. Sachdev, arXiv:2512.23962

o ['ractionalized Fermi liquids and the cuprate phase diagram, P. M. Bonetti, M. Christos, A. Nikolaenko,
A.A. Patel, and S. Sachdev, arXiv:2508.20164

o Thermal SU(2) lattice gauge theory of the cuprate pseudogap: reconciling Fermzi arcs and hole pockets, H. Pandey;,
M. Christos, P. M. Bonetti, R. Shanker, A. Nikolaenko, S. Sharma, and S. Sachdev, arXiv:2507.05336



